Towards a Historical Ecology of Intertidal Foraging in the Mafia Archipelago

Total Page:16

File Type:pdf, Size:1020Kb

Towards a Historical Ecology of Intertidal Foraging in the Mafia Archipelago Towards a Historical Ecology of Intertidal Foraging in the Mafia Archipelago: Archaeomalacology and Implications for Marine Resource Management Authors: Patrick Faulkner, Matthew Harris, Othman Haji, Alison Crowther, Mark C. Horton, et. al. Source: Journal of Ethnobiology, 39(2) : 182-203 Published By: Society of Ethnobiology URL: https://doi.org/10.2993/0278-0771-39.2.182 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Journal-of-Ethnobiology on 23 Jun 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Max Planck Digital Library Journal of Ethnobiology 2019 39(2): 182–203 Towards a Historical Ecology of Intertidal Foraging in the Mafia Archipelago: Archaeomalacology and Implications for Marine Resource Management Patrick Faulkner1,2*, Matthew Harris3, Othman Haji4, Alison Crowther2,3, Mark C. Horton5, and Nicole L. Boivin2 Abstract. Understanding the timing and nature of human influence on coastal and island ecosystems is becoming a central concern in archaeological research, particularly when investigated within a historical ecology framework. Unfortunately, the coast and islands of eastern Africa have not figured significantly within this growing body of literature, but are important given their historically contingent environmental, social, and political contexts, as well as the considerable threats now posed to marine ecosystems. Here, we begin developing a longer-term understanding of past marine resource use in the Mafia Archipelago (eastern Africa), an area of high ecological importance containing the Mafia Island Marine Park. Focusing on the comparatively less researched marine invertebrates provides a means for initiating discussion on potential past marine ecosystem structure, human foraging and environmental shifts, and the implications for contemporary marine resource management. The available evidence suggests that human-environment interactions over the last 2000 years were complex and dynamic; however, these data raise more questions than answers regarding the specific drivers of changes observed in the archaeomalacological record. This is encouraging as a baseline investigation and emphasizes the need for further engagement with historical ecology by a range of cognate disciplines to enhance our understanding of these complex issues. Keywords: eastern Africa, Juani Island, Iron Age, archaeomalacology, marine resource use Introduction archaeological inquiry, particularly when Human impacts on oceans and coastal embedded within historical ecology and/or margins from over-exploitation, urban- applied zooarchaeology. Historical ecology ization, industrialization, and resulting is an interdisciplinary approach combining pollution have caused habitat loss, reduced long-term historical perspectives with ecol- species diversity, and accelerated oceanic ogy to understand ecosystem evolution, and atmospheric warming on a global natural and anthropogenic environmental scale (as summarized by Jackson et al. modifications, and human-environmental 2001). While these issues have garnered interactions (Balée and Erickson 2006; worldwide attention, the contemporary Crumley 1994). As such, historical ecol- situation can be viewed as part of a much ogy is particularly effective for framing longer-term history of humans exploiting research agendas focused on the types of coasts and islands (Braje et al. 2017; Jack- issues noted above in a range of terrestrial son et al. 2001). The timing and nature of and aquatic environments (Boivin et al. human interactions with coastal and island 2016; Braje and Rick 2013; Fitzpatrick and ecosystems has become a focal point of Keegan 2007). 1 Department of Archaeology, School of Philosophical and Historical Inquiry, Brennan MacCallum Building A18, The University of Sydney, NSW, 2006 Australia. 2 Max Planck Institute for the Science of Human History, Jena, Germany. 3 School of Social Science, The University of Queensland, Brisbane, Australia. 4 Department of Museums and Antiquities, Zanzibar, Tanzania. 5 Royal Agricultural University, Cirencester, England. *Corresponding author ([email protected]) Downloaded From: https://bioone.org/journals/Journal-of-Ethnobiology on 23 Jun 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Max Planck Digital Library Archaeomalacology and Implications for Marine Resource Management 183 Possible multidirectional changes in fifteenth centuries CE), with similar trends past socio-economic organization may apparent in the fish data from all four be recognized within a historical ecolog- trenches. Marine and terrestrial tetrapods ical approach, broadening the scope and are relatively scarce through the EIA and significance of zooarchaeological research, MIA-LIA, with small game (e.g., duiker) feeding long-term data into the devel- and marine turtle dominant. Archaeobotan- opment of more effective conservation, ical evidence indicates crops in very small management, and environmental policies quantities, all of which are attributed to the (Balée 2006; Braje et al. 2017; Rick and MIA-LIA, indicating a lack of convincing Lockwood 2013). Schwerdtner Máñez agricultural evidence for the EIA. Based on et al. (2014:1–2), for example, note five these data, Crowther et al. (2016) interpret key areas of inquiry within the historical the economic structure as representing an ecology of marine environments, includ- initial EIA maritime adaptation during the ing assessing the relative importance of phase of island colonization, followed by key drivers of environmental change, a mixed herding/farming economy in the understanding the significance of marine MIA-LIA that continued to include signifi- resources for human societies, and consid- cant marine resources. ering how historical information can be Here, we expand on the previ- used to improve future management. In ous archaeomalacological analyses to reviewing the range of potential threats to focus on trends in human foraging and modern marine environments, Crain et al. human-environment interactions from the (2009:57) also suggest that understanding EIA to the present and, in doing so, consider the cumulative effects of multiple threats the implications of these data for resource to marine ecosystems must be a research management. Following Contreras (2016), priority. Zooarchaeology and historical rather than concentrating on whether envi- ecology can make a significant contribu- ronments influenced humans or vice versa, tion in these areas, providing insights into we explore how humans and their environ- ecosystem change, human ecodynamics, ments interacted. As such, we emphasize and the assessment of ecological bench- the interaction of humans and their envi- marks for a range of marine taxa (e.g., ronment within a specific context, taking a Douglass et al. 2018, 2019; McKechnie et temporal approach to investigate the nature al. 2014; Wolverton et al. 2016). of intertidal foraging and to isolate potential The aim of this paper is to develop variability or stability in these behaviors. an understanding of past marine mollusk Archaeomalacological research in eastern use at the Juani Primary School site in the Africa is in an early stage of development Mafia Archipelago (eastern Africa), an area (e.g., Douglass 2017; Faulkner et al. 2018a, contained within the Mafia Island Marine 2018b; Msemwa 1994), meaning that the Park. Detailed analyses and interpretations past use of these resources remains relatively of the Sealinks Project investigation at this poorly understood. In contrast, archaeolog- site are presented elsewhere (Crowther et ical research in other coastal regions has al. 2016). However, in summary, the site demonstrated the influence that human contained rich ceramic assemblages along- foraging can have on mollusk abundance, side abundant faunal remains dominated richness, and diversity, and how these effects by fish and marine mollusks. Based on contribute to broader ecosystem alterations preliminary analyses from a single trench, (e.g., Giovas et al. 2010; Jerardino 2016; the mollusks reduce in density and rich- Jerardino and Marean 2010; Kyriacou et al. ness from the Early Iron Age (EIA, circa 2015). As marine invertebrates fill a crucial first–sixth centuries CE) to the Middle Iron role within marine ecosystems (e.g., habi- Age-Late Iron Age (MIA-LIA, circa seventh– tat complexity, trophic structure), baseline Journal of Ethnobiology 2019 39(2): 182–203 Downloaded From: https://bioone.org/journals/Journal-of-Ethnobiology on 23 Jun 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Max Planck Digital Library 184 Faulkner, Harris, Haji, Crowther,
Recommended publications
  • Darwin's Legacy
    Darwin’s Darwin’s Legacy: Legacy: 24 TheThe Status Status of Evolutionary of Evolutionary ArchaeologyArchaeology in Argentina in Argentina Tribute to the 200th anniversary of the Editedbirth by of Charles Darwin and the 150th Marceloanniversary Cardillo & ofHernán the publication Muscio of The Origin of Species El Legado de Darwin: El estado de la Arqueología Evolucionista en Argentina Homenaje a los 200 años del nacimiento de Charles Darwin y a los 150 años de la publicación de El Origen de las Especies Access Archaeology o hae pre rc s A s A y c g c e o l s o s e A a r c Ah Edited by Marcelo Cardillo & Hernán Muscio Archaeopress Publishing Ltd Gordon House 276 Banbury Road Oxford OX2 7ED www.archaeopress.com ISBN 978 1 78491 270 3 (e-Pdf) ISBN 978 1 78491 276 5 © Archaeopress and the individual authors 2016 South American Archaeology Series No 24 Series Editor Andrés D. Izeta All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copyright owners. Contents PREFACE ������������������������������������������������������������������������������������������������������������������������������������� v Hernán Muscio, Marcelo Cardillo Introduction: Evolutionary Archaeology a comprehensive framework �������������������������������������� vii Hernán MUSCIO, Marcelo CARDILLO References �����������������������������������������������������������������������������������������������������������������������������������xiii
    [Show full text]
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • Anticoagulant Activity of Marine Gastropods Babylonia Spirata Lin, 1758 and Phalium Glaucum Lin, 1758 Collected from Cuddalore, Southeast Cost of India
    International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 5, Suppl 4, 2013 Research Article ANTICOAGULANT ACTIVITY OF MARINE GASTROPODS BABYLONIA SPIRATA LIN, 1758 AND PHALIUM GLAUCUM LIN, 1758 COLLECTED FROM CUDDALORE, SOUTHEAST COST OF INDIA N. PERIYASAMY*, S. MURUGAN AND P. BHARADHIRAJAN CAS in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai, 608502 Tamil Nadu, India. Email: [email protected] Received: 23 July 2013, Revised and Accepted: 03 Oct 2013 ABSTRACT Objectives: Molluscs are highly delicious seafood and they are also very good source for biomedically imported products. Among the molluscs some have pronounced pharmacological activities or other properties which are useful in biomedical area. Methods: In the present study glycosaminoglycans was isolated from two marine gastropods such as Babylonia spirata and Phalium glaucum. Results: The isolated glycosaminoglycans were quantified in crude samples and they were estimated as 8.7 gm/kg & 5.3 gm/kg crude in Babylonia spirata and Phalium glaucum respectively. Both the gastropods showed the anticoagulant activity of the crude samples 134 USP units/mg and 78 USP units/mg correspondingly in B. spirata and P. glaucum. In the agarose gel electrophoresis using acetate buffer, the band of the crude samples studied showed the band with similar mobility to standard heparin sulfate. FTIR analysis reveals the presence of anticoagulant substance signals at different ranges. Conclusion: Among the two gastropods B. spirata showed more anticoagulant activity than that of P. glaucum. Keywords: B. spirata, P. glaucum Anticoagulant activity, Agarose gel electrophoresis, FTIR INTRODUCTION heparin-like compounds in molluscs were observed by [21-25] studied in-vitro anticoagulant activities of alginate sulphate and its Commonly glycosaminoglycans are classified based on their quaterized derivates.
    [Show full text]
  • Ensiklopedia Keanekaragaman Invertebrata Di Zona Intertidal Pantai Gesing Sebagai Sumber Belajar
    ENSIKLOPEDIA KEANEKARAGAMAN INVERTEBRATA DI ZONA INTERTIDAL PANTAI GESING SEBAGAI SUMBER BELAJAR SKRIPSI Untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Pendidikan Biologi Diajukan Oleh Tika Dwi Yuniarti 15680036 PROGRAM STUDI PENDIDIKAN BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UIN SUNAN KALIJAGA YOGYAKARTA 2019 ii iii iv MOTTO إ َّن َم َع إلْ ُع ْ ِْس يُ ْ ًْسإ ٦ ِ Sesungguhnya sesudah kesulitan itu ada kemudahan (Q.S. Al-Insyirah: 6) “Hidup tanpa masalah berarti mati” (Lessing) v HALAMAN PERSEMBAHAN Skripsi ini saya persembahkan untuk: Keluargaku: Ibu, bapak, dan kakak tercinta Simbah Kakung dan Simbah Putri yang selalu saya cintai Keluarga di D.I. Yogyakarta Teman-teman seperjuangan Pendidikan Biologi 2015 Almamater tercinta: Program Studi Pendidikan Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta vi KATA PENGANTAR Puji syukur penulis panjatkan atas kehadirat Allah Yang Maha Pengasih lagi Maha Penyayang yang telah melimpahkan segala rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Selawat serta salam senantiasa tercurah kepada Nabi Muhammad SAW beserta keluarga dan sahabatnya. Skripsi ini dapat diselesaikan berkat bimbingan, arahan, dan bantuan dari berbagai pihak. Oleh karena itu, penulis mengucapkan terimakasih kepada: 1. Bapak Dr. Murtono, M.Si., selaku Dekan Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta. 2. Bapak M. Ja’far Luthfi, Ph.D., selaku Wakil Dekan Fakultas Sains dan Teknologi. 3. Bapak Dr. Widodo, S.Pd., M.Pd., selaku Ketua Program Studi Pendidikan Biologi 4. Ibu Sulistyawati, S.Pd.I., M.Si., selaku dosen pembimbing skripsi dan dosen pembimbing akademik yang selalu mengarahkan dan memberikan banyak ilmu selama menjadi mahasiswa Pendidikan Biologi.
    [Show full text]
  • Paleozoology in the Service of Conservation Biology
    Evolutionary Anthropology 15:11–19 (2006) ARTICLES Paleozoology in the Service of Conservation Biology R. LEE LYMAN Paleozoological data reveal past conditions created by anthropogenic and nat- grapple with the fact that ecosystems ural processes. These conditions can serve as benchmarks of ecological proper- and landscapes are not static for natu- ties and processes desired by conservation biologists. Paleozoological data pro- ral and anthropogenic reasons.16 Their vide empirical evidence analogous to experimental results of anthropogenic and desire to manage a minimally anthro- environmental causes. They can be used to determine whether a taxon is native or pogenically influenced ecosystem intro- exotic to an area, distinguish invasive from recolonizing taxa, choose a manage- duces the difficulty of identifying the ment action likely to produce a desired result, test benchmarks based on historic boundary between natural and unnatu- data, reveal unanticipated effects of conservation efforts, and identify causes of ral.17–19 But nonanthropogenically in- ecological conditions. It is time to use paleoecological knowledge in the service of fluenced ecosystems are not always modern conservation biology. desired. For example, some anthropo- genically introduced exotic taxa such as game birds in the western United States Conservation biologists, restoration compositions of biological communi- are economically beneficial and ecolog- ecologists, and wildlife managers of- ties occupying tens to hundreds of ically benign. ten select an ecological benchmark,1,2 hectares, as well as to ecosystems con- The paleozoological record pro- ecological baseline,3 or historical sisting of organisms, geology, fire re- vides unprecedented data that reflect landscape4,5 that they seek to recreate gimes, and so on, as well as ecological the long-term operation of many eco- or maintain in an area.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Journal of Coastal Life Medicine 2016; 4(6): 444-447 444
    Journal of Coastal Life Medicine 2016; 4(6): 444-447 444 Journal of Coastal Life Medicine journal homepage: www.jclmm.com Original article doi: 10.12980/jclm.4.2016J5-199 ©2016 by the Journal of Coastal Life Medicine. All rights reserved. Comparative studies on biochemical analysis of some economically important marine gastropods along Gulf of Mannar region, southeast coast of India Jayanthi Govindarajalu1, Anand Muthusamy1*, Chelladurai Gurusamy2, Karthigarani Mani3, Kumaraguru Arumugam1 1Department of Marine and Coastal Studies, Madurai Kamaraj University, Madurai, Tamil Nadu, India 2Departmentof Zoology, Kamaraj College, Tuticorin, Tamil Nadu, India 3Department of Zoology, Yadhava College, Madurai, Tamil Nadu, India ARTICLE INFO ABSTRACT Article history: Objective: To signify the economic importance of molluscan-gastropod food by estimating its Received 12 Oct 2015 biochemical composition. Received in revised form 26 Oct, 2nd Methods: Samples were collected from the trawl net bycatch at the fish landing center of revised form 5 Nov, 3rd revised form 7 Mandapam coast of the Gulf of Mannar region. The total protein, carbohydrate, lipid, ash and Nov 2015 moisture contents were estimated from nine gastropods i.e. Phalium glaucum, Tonna dolium, Accepted 5 Apr 2016 Hemifusus pugilinus, Babylonia spirata, Xancus pyrum, Chicoreus ramosus, Harpa articularis, Available online 15 Jun 2016 Ficus ficus and Babylonia zeylanica. Results: The percentages of protein (41.2%), carbohydrate (17.5%) and lipid (6.6%) contents were found highest in Babylonia spirata, followed by other gastropods. The maximum ash content was observed in Chicoreus ramosus (1.21%) and the maximum moisture content was Keywords: observed in Phalium glaucum (83.71%). Biochemical composition Conclusions: The results show that all the nine gastropods contain good sources of protein and Nine gastropods other biochemical constituents and can be used for edible purposes to prevent starvation.
    [Show full text]
  • AS General Studies to BS Biology, 4-8 Science Certification
    Northeast Texas Community College & Texas A&M University – Texarkana 2019-2020 Guided Pathways Associate of Science in General Studies to Bachelor of Science in Biology, 4-8 Science Certification NTCC A&M-TEXARKANA COURSES HOURS COURSES HOURS ENGL 1301 3 BIOL 307 4 SPCH 1315 (or) SPCH 1321 3 BIOL 308 3 MATH 1314* 3 BIOL 310 4 BIOL 1406 4 BIOL 402 4 BIOL 1407 4 BIOL 466 4 HIST 2321* 3 BIOL 472 3 ARTS 1301* 3 UD Biology Electives 9 HIST 1301 3 RDG 343 3 HIST 1302 3 RDG 350 3 GOVT 2305 3 ED 311 3 GOVT 2306 3 ED 321 3 PSYC 2301* 3 BLOCK I ENGL 1302 3 ED 331 3 GEOL 1403 (CAO B) 4 ED 495 3 SPAN 1411* 4 BLOCK II PHED* 2 ED 496 3 MATH 1350 (Elective) 3 SPED 418 3 MATH 1351 (Elective) 3 PHYS 1415 (Elective) 4 PHYS 1417 (Elective) 4 2.8 Minimum GPA TOTAL 65 TOTAL 120 *Other Courses may Apply. See NTCC Degree Plan for Options 54 Upper Division (UD) Hours Required for the BS Degree 30 Hours of Residency Required Travel to Main Campus in Texarkana Required to Complete Degree UD= Upper Division LD= Lower Division Effective September 1, 2019 – August 31, 2024. This unofficial degree plan is for informational purposes only. Please contact [email protected] for questions. TEACHER PREPARATION PROGRAM ADMISSION REQUIREMENTS Apply 3rd Year, 1st Semester 1. Application to Teacher Prep Program via TK20 in September or February 2. GPA requirement of 2.8 cumulative 3. Completion of ED 311, ED 321 and SPED 410 with grade C or above 4.
    [Show full text]
  • PALEOZOOLOGY : INTRODUCTION Dr Poonam Kumari Dept of Zoology (Bsc PART III Paper VI )
    PALEOZOOLOGY : INTRODUCTION Dr Poonam kumari Dept Of Zoology (BSc PART III Paper VI ) It is the branch of paleontology, paleobiology, or zoology dealing with the recovery and identification of multicellular animal remains from geological (or even archeological) contexts, and the use of these fossils in the reconstruction of prehistoric environments and ancient ecosystems. Paleozoology is derived from greek work i.e palaeon means "old" and zoon " means animal. Vertebrate Paleozoology Vertebrate paleozoology refers to the use of morphological, temporal, and stratigraphic data to map vertebrate history in evolutionary theory. Vertebrates are classified as a subphylum of Chordata, a phylum used to classify species adhering to a rod-shaped, flexible body type called a notochord. Classes of vertebrates listed in chronological order from oldest to most recent include heterostracans, osteostracans, coelolepid agnathans, acanthodians, osteichthyan fishes, chondrichthyan fishes, amphibians, reptiles, mammals, and birds. All vertebrates are studied under standard evolutionary generalizations of behavior and life process, although there is controversy over whether population can be accurately estimated from limited fossil resources. Evolutionary origins of vertebrates as well as the phylum Chordata have not been scientifically determined. Many believe vertebrates diverged from a common ancestor of chordates and echinoderms. This belief is well supported by the prehistoric marine creature Amphioxus. Amphioxus does not possess bone, making it an invertebrate, but it has common features with vertebrates including a segmented body and a notochord. This could imply that Amphioxus is a transitional form between an early chordate, echinoderm or common ancestor, and vertebrates. Quantitative Paleozoology Quantitative paleozoology is a process of taking a census of fossil types rather than inventory.
    [Show full text]
  • Course Syllabus BIOL 443/543 Paleozoology, Fall 2019
    Texas A&M University-Texarkana - Course Syllabus BIOL 443/543 Paleozoology, Fall 2019 Instructor: Dr. Ben Neuman Office Location: SCIT 318G Phone: (903) 334 6654 Email: [email protected] Course Description: This course looks at the evolution of modern animals by bringing together recent advances in genetics with the fossil record. This course will provide an evolutionary perspective on the origins of important groups of animals from single-celled organisms to modern humans through lectures, discussions and hands-on workshops with fossils. Prerequisites: Invertebrate zoology or permission from instructor. Course Delivery Method: Face to Face Textbooks/Resources: This course will also draw on papers available through the Texas A&M- Texarkana Library, which will be made available to students through Blackboard. You will also need some blank paper and pencils for lab work. If you are able, please bring a laptop or device capable of searching the internet and recording notes to class. If you do, please remember to bring a power supply. Useful books to pick up used if you want to learn more, but not required: Introduction to Paleobiology and the Fossil Record. Benton MJ, paperback ISBN: 978-1- 4051-4157-4 The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Mikhail A. Fedonkin, James G. Gehling, Kathleen Grey, Guy M. Narbonne, and Patricia Vickers-Rich Hardback, 344 pages. ISBN:9780801886799 January 2008 Student Learning Outcomes: 1. Learn to identify important groups of animals in the fossil record by synthesizing information about comparative anatomy and taphonomy 2. Analyze trace fossil data to better understand the behavior and ecology of extinct animals 3.
    [Show full text]
  • Life Sciences Glossary: Fields of Biology: Malacology and Mammalogy- Examrace
    9/17/2021 Life Sciences Glossary: Fields of Biology: Malacology and Mammalogy- Examrace Examrace Life Sciences Glossary: Fields of Biology: Malacology and Mammalogy Glide to success with Doorsteptutor material for competitive exams : get questions, notes, tests, video lectures and more- for all subjects of your exam. Fields of Biology Malacology: Study of mollusks. Mammalogy: Study of mammals. Mastology: Study of breast including teats. Melanology: Study of pigments. Molecular Biology: Study of life sciences on molecular level (i.e.. RNA and DNA level) . Mycology: Study of fungi. Myology (Sarcology) : Study of muscles. Myrmecology: Study of ants. Neonatology: Study of the new borns up to two months of age. Nephrology: Study of kidney. Neurology: Study of nervous system. Nidology: Study of nests of birds. Nosology: Study of diseases. Odontology: Study of teeth and gums. Olericulture: The study of vegetable yielding plants. Oncology: Study of cancer. Oneirology: Study of dreams. Ontogeny: Embryonic history. Oology: Study of eggs of birds. Ophthalmology: Study of eyes. Organocology: Study of development of organs under embryology. Organology: Study of organs. Ornithology: Study of birds. 1 of 4 9/17/2021 Life Sciences Glossary: Fields of Biology: Malacology and Mammalogy- Examrace Osteology: Study of bones. Oto-rhino-laryngology: Study of ear, nose and larynx. Pedology: Study of larval stages. Paleontology (Gr. Apples-ancient being) : The branch of science which deals with the study of fossils and their distribution in time. Paleozoology: The branch of science which deals with the study of fossils of animals. Palynology: Study of pollen grains in relation to taxonomy and evolution etc. Parasitology: Study of parasites.
    [Show full text]
  • MARINE GASTROPODS and BIVALVES of BIRI, NORTHERN SAMAR ABSTRACT a Descriptive Research Was Conducted in 2 Barangays of Biri
    J.Bio.Innov 8(3), pp: 319-329, 2019 |ISSN 2277-8330 (Electronic) Flores et al., MARINE GASTROPODS AND BIVALVES OF BIRI, NORTHERN SAMAR Carla U. Norcio1 and Abel Alejandro U. Flores, Jr.1,2 1University Research and Development Services 1,2University Research and Development Services and Chair, Biological Sciences Department UEP College of Science ABSTRACT A descriptive research was conducted in 2 barangays of Biri, Northern Samar, to describe the species composition of mollusks in the island municipality. Specifically, it aimed to identify the gastropods and bivalves present in the coastal waters of Biri, Northern Samar; to quantify their density and frequency; determine the prevailing environmental conditions in the study area during the day time and night time; and, enumerate the gastropod and bivalve species that are of economic value to the fisherfolks in the sampling sites. In each site, three 100-meter transect lines were laid seaward, with ten 1-square meter quadrats established along each line. All gastropods and bivalves within the quadrats were counted; those outside were not counted, but were listed. Interview with residents for additional information and data was done using a researcher-made interview guide. Results show 26 mollusk species representing 10 genera, 14 families, 5 orders, and 2 classes. In Barangay San Pedro, densest among the species during night time and day time sampling was Cypraea testunidaria Linne, while in Barangay San Antonio, densest at night was Cypraea annulus Linne, whereas during day time, it was Turbo (Lunella) cinereus. The coastal waters of the sampling sites have optimum conditions which favour the existence of gastropods and bivalves, and although variations do occur, such fluctuations are insignificant to affect the frequency and density of these species.
    [Show full text]