Quantitative Genexpressionsanalysen Humaner Dopaminerger Neurone

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Genexpressionsanalysen Humaner Dopaminerger Neurone Dissertation zur Erlangung des Doktorgrades der Humanbiologie (Dr. biol. hum.) der Medizinischen Fakultät der Universität Ulm Quantitative Genexpressionsanalysen humaner dopaminerger Neurone nach Lasermikrodissektion aus post-mortem Mittelhirngewebe von Morbus Parkinson Patienten und Kontrollen eingereicht von Falk Schlaudraff aus Lüneburg Ulm, 2010 durchgeführt am Institut für Allgemeine Physiologie (Leitung Prof. Paul Dietl) Arbeitsgruppe Molekulare Neurophysiologie unter Leitung und Betreuung von Prof. Dr. Birgit Liss an der Universität Ulm Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin 1. Berichterstatter: Prof. Dr. Birgit Liss 2. Berichterstatter: Prof. Dr. Dietmar Thal Tag der Promotion: 26.07.2010 Widmung für meine lieben Eltern und Jessica Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis ________________________________________________ i Abkürzungsverzeichnis __________________________________________ vi 1. Einleitung ___________________________________________________ 1 1.1 Morbus Parkinson ______________________________________________________ 1 1.2 Physiologie und Pathophysiologie des Morbus Parkinson _______________________ 2 1.2.1 Der Neurotransmitter Dopamin ________________________________________ 2 1.2.2 Aufbau und Funktion des dopaminergen Systems __________________________ 2 1.2.2.1 Aufbau des humanen dopaminergen Mittelhirnsystems ________________________ 3 1.2.2.2 Neuroanatomie des murinen dopaminergen Mittelhirnsystems __________________ 4 1.2.2.3 Die Basalganglienschleife und Dopamin ___________________________________ 5 1.2.3 Differentielle Vulnerabilität dopaminerger Mittelhirnneurone ________________ 7 1.3 Ursachen und Pathomechanismen des PD ___________________________________ 8 1.3.1 Auswahl der Kandidatengene für die Genexpressionsstudien des PD ___________ 9 1.3.1.1 Monogenetische Formen des PD __________________________________________ 9 1.3.1.2 Dopamin-assoziierte Gene______________________________________________ 12 1.3.1.3 Mikro RNA und Genregulation __________________________________________ 16 1.3.1.4 Aktivitätskontrolle dopaminerger Mittehirnnurone ___________________________ 17 1.3.1.5 Markergene: PD und DA unabhängig, Vulnerabilität und neuronal ______________ 21 1.3.1.6 Kandidatengene aus Mausmodellen mit PD-assoziierter dysregulierter mRNA- Expression ________________________________________________________________ 21 1.4 Zielsetzung der vorliegenden Arbeit _______________________________________ 24 2. Material und Methoden ______________________________________ 26 2.1 Material _____________________________________________________________ 26 2.1.1 Geräte und Hardware _______________________________________________ 26 2.1.2 Verbrauchsmaterial ________________________________________________ 27 2.1.3 Verwendete Chemikalien ____________________________________________ 27 2.1.4 Geninformationen __________________________________________________ 28 2.1.5 Oligonukleotide (Primer, Probes)______________________________________ 30 2.1.5.1 Humane TaqMan Assays und miScript-SYBRgreen Assay ____________________ 30 i Inhaltsverzeichnis 2.1.5.2 Murine TaqMan-, miScript- und SYBRgreen-Assays ________________________ 32 2.1.5.3 Murine Primer für die qualitative Multiplex-Nested PCR _____________________ 33 2.1.6 Lösungen und Masteransätze _________________________________________ 34 2.1.7 Humanes Hirngewebe ______________________________________________ 36 2.1.8 Murines Hirngewebe _______________________________________________ 39 2.2 Methoden ____________________________________________________________ 40 2.2.1 Generelles Schema zur real-time qPCR individueller Zellen nach UV-LMD ____ 40 2.2.2 Hirngewebepräparation _____________________________________________ 42 2.2.2.1 Präparation von nativem, murinem Hirngewebe _____________________________ 42 2.2.2.1a Cochlea-Präparation _________________________________________________ 42 2.2.2.2 Präparation von humanem Hirngewebe ___________________________________ 43 2.2.2.3 Anfertigung von Gefrierschnitten mittels eines Gefriermikrotoms ______________ 43 2.2.2.4 Fixieren und Färben von Gefrierschnitten __________________________________ 44 2.2.2.5 Kryoasservieren von Gefrierschnitten _____________________________________ 44 2.2.3 Kontaktfreie UV-Lasermikrodissektion (UV-LMD) _______________________ 45 2.2.4 Molekularbiologische Methoden zur real-time qPCR-basierter Genexpressionsanalyse __________________________________________________ 48 2.2.4.1 pH-Wertbestimmung von Hirngewebe ____________________________________ 48 2.2.4.2 Nukleinsäure-Isolation ________________________________________________ 49 2.2.4.2a Isolation totaler RNA _________________________________________________ 49 2.2.4.2b Isolation kleiner RNAs (miRNA) _______________________________________ 50 2.2.4.2c Nukleinsäureisolation aus PFA-fixiertem Gewebe __________________________ 50 2.2.4.3 Konzentrationsbestimmung von Nukleinsäuren _____________________________ 51 2.2.4.4 RNA-Qualitätsbestimmung: RIN-Analyse und Small RNA Analyse mittels Agilent- Technologie _______________________________________________________________ 52 2.2.4.5 Zelllyse von UV-LMD Proben und cDNA-Synthese aus mRNAs und miRNAs ____ 54 2.2.4.6 Präzipitation zur Aufreinigung von RNA und cDNA _________________________ 55 2.2.4.7 Polymerase-Kettenreaktion _____________________________________________ 55 2.2.4.7a qualitative Multiplex-Nested PCR _______________________________________ 56 2.2.4.7b Agarose-Gelelektrophorese ____________________________________________ 57 2.2.4.7c Quantitative real-time PCR ____________________________________________ 58 ii Inhaltsverzeichnis 2.2.4.7c-1 Sondenspezifische Detektion _________________________________________ 59 2.2.4.7c-2 Fluoreszenzdetektion mittels SYBRgreen real-time PCR___________________ 60 2.3 Datenverarbeitung, Datenanalyse und Statistik_______________________________ 63 2.3.1 Primerdesign mit Oligo 6 ____________________________________________ 63 2.3.2 Auswertung von real-time qPCR Daten _________________________________ 64 2.3.2.1 Verwendete Standards und Standardkurven ________________________________ 64 2.3.2.2 Assayperformance-Analysen ____________________________________________ 65 2.3.2.3 Berechnung der relativen Quantität aus real-time qPCR-Daten _________________ 66 2.3.2.4 Berechnung der Relation und fold difference aus real-time qPCR Daten __________ 67 2.3.3 Datenanalyse und Software für die Datenanalyse (Excel und R) _____________ 68 3. Ergebnisse__________________________________________________ 69 3.1 Charakterisierung und Qualitätskontrolle des humanen Hirngewebes _____________ 69 3.2 Optimierung der UV-LMD Methodik ______________________________________ 73 3.2.1 Vergleich verschiedener Ablationsmethoden und Objektträger ______________ 74 3.2.2 Erweiterung der UV-LMD-Methodik __________________________________ 76 3.2.2.1 Genexpression muriner Girk-Kanäle im Cerebellum _________________________ 76 3.2.2.2 UV-LMD muriner Darmkrypten für CGH-Analysen _________________________ 78 3.2.3 Etablierung der UV-LMD-Methodik für Einzelzellen aus PFA-fixiertem Gewebe __________________________________________________ 79 3.2.4 Etablierung paralleler mRNA- und miRNA-Expressionsanalyse _____________ 82 3.4 Real-time qPCR Assay-Etablierung für standardisierte Analysen humaner Einzelzellen _____________________________________________________ 84 3.4.1 Performance humaner real-time qPCR-Assays ___________________________ 84 3.4.2 Untersuchung des Einflusses von Fixier- und Färbeprozedur auf die RNA-Qualität von Hirngewebeschnitten ____________________________________ 87 3.4.3 Evaluation von Sensitivität und Spezifität der real-time qPCR-Assays ________ 88 3.5 Genexpressionsanalyse individueller humaner dopaminerger Mittelhirnneurone ____ 90 3.5.1 Evaluation der TH-Genexpression verschiedener Assayserien _______________ 90 3.5.2 Vergleichende Expressionsanalysen von Mittelhirngewebe versus UV-LMD- dissektierte NM-positive DA Mittelhirnneurone ______________________________ 94 3.5.3 Expressionsanalysen Dopamin-assoziierter Gene _________________________ 96 3.5.4 Expressionsanalysen von Ionenkanälen _________________________________ 99 iii Inhaltsverzeichnis 3.5.5 Genexpressionsanalysen von PARK-Genen und Genen, die in anderen Studien zur PD-Pathogenese identifiziert wurden ___________________________________ 102 3.5.6 Genexpressionsratios von Genen mit verwandter Funktion_________________ 104 3.5.7 Geschlechtsspezifische Genxpressionsunterschiede in DA Mittelhirnneuronen von PD-Patienten und Kontrollen _________________________ 106 4. Diskussion _________________________________________________ 107 4.1 Methodische Aspekte _________________________________________________ 108 4.1.1 Makroskopie des humanen Mittelhirngewebes __________________________ 108 4.1.2 Gewebezusammenstellung für die humanen Studien ______________________ 108 4.1.3 Qualitätsmerkmale des Ausgangsmaterials _____________________________ 109 4.1.3.1 Der RIN-Wert als RNA-Qualitätsmaßstab ________________________________ 109 4.1.3.2 pH-Wert, PMI, Anteil kleiner RNAs und RIN-Wert-Korrelationen _____________ 111 4.1.3.3 Ausschluss von Gewebematerial von den Genexpressionsanalysen _____________ 112 4.2 Optimierung der UV-LMD real-time qPCR Methodik für die Genexpressionsanalysen von UV-LMD-dissektierten Proben _________________________________________ 113 4.2.1 Optimierung, Erweiterung und Validierung der UV-LMD-Methode _________ 113 4.2.2.1 Erweiterte Anwendung der UV-LMD-Methode ____________________________
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • SLC45A3-ELK4 Is a Novel and Frequent Erythroblast Transformation–Specific Fusion Transcript in Prostate Cancer
    Published OnlineFirst March 17, 2009; DOI: 10.1158/0008-5472.CAN-08-4926 Priority Report SLC45A3-ELK4 Is a Novel and Frequent Erythroblast Transformation–Specific Fusion Transcript in Prostate Cancer David S. Rickman,1 Dorothee Pflueger,1 Benjamin Moss,1 Vanessa E. VanDoren,1 Chen X. Chen,1 Alexandre de la Taille,4,5 Rainer Kuefer,6 Ashutosh K. Tewari,2 Sunita R. Setlur,7 Francesca Demichelis,1,3 and Mark A. Rubin1 Departments of 1Pathology and Laboratory Medicine and 2Urology, and 3Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York; 4Department of Urology, CHU Mondor and 5Institut National de la Sante et de la Recherche Medicale, Unite´841, Cre´teil,France; 6Department of Urology, University Hospital Ulm, Ulm, Germany; and 7Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts Abstract (2, 3), and a specific expression profile (4, 5). Androgen-regulated ¶ Chromosomal rearrangements account for all erythroblast genes account for the majority of the 5 genomic regulatory transformation–specific (ETS) family member gene fusions promoters elements fused with ETS genes in prostate cancer (6). The promoter of the androgen-regulated transmembrane protease, that have been reported in prostate cancer and have clinical, serine 2 TMPRSS2 diagnostic, and prognostic implications. Androgen-regulated ( ) gene is fused to the coding region of members genes account for the majority of the 5¶ genomic regulatory of the ETS family of transcription factors, most commonly v-ets TMPRSS2-ERG, erythroblastosis virus E26 oncogene homologue (avian; ERG; ref. 7). promoter elements fused with ETS genes. Solute carrier family 45, member 3 SLC45A3 TMPRSS2-ETV1, and SLC45A3-ERG rearrangements account ( ), also referred to as for roughly 90% of ETS fusion prostate cancer.
    [Show full text]
  • Falling in Love Is Associated with Immune System Gene Regulation T ⁎ ⁎⁎ Damian R
    Psychoneuroendocrinology 100 (2019) 120–126 Contents lists available at ScienceDirect Psychoneuroendocrinology journal homepage: www.elsevier.com/locate/psyneuen Falling in love is associated with immune system gene regulation T ⁎ ⁎⁎ Damian R. Murraya, , Martie G. Haseltonb,c, , Melissa Falesb, Steven W. Coled,e a Department of Psychology, Tulane University, New Orleans, LA 70118, United States b Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, United States c Department of Communication Studies, University of California, Los Angeles, Los Angeles, CA 90095, United States d Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095, United States e Norman Cousins Center, University of California, Los Angeles School of Medicine, Los Angeles, CA 90095, United States ARTICLE INFO ABSTRACT Keywords: Although falling in love is one of the most important and psychologically potent events in human life, the Romantic love somatic implications of new romantic love remain poorly understood. Psychological, immunological, and re- Social genomics productive perspectives offer competing predictions of the specific transcriptional regulatory shifts thatmight Immune system regulation accompany the experience of falling in love. To characterize the impact of romantic love on human genome Health function, we conducted genome-wide transcriptome profiling of 115 circulating immune cell samples collected from 47 young women over the course of a 2-year longitudinal study. Analyses revealed a selective alteration in immune cell gene regulation characterized by up-regulation of Type I interferon response genes associated with CD1C+/BDCA-1+ dendritic cells (DCs) and CLEC4C+/BDCA-2+ DCs, and a reciprocal down-regulation of α- defensin-related transcripts associated with neutrophil granulocytes.
    [Show full text]
  • Whole Egg Consumption Increases Gene Expression Within the Glutathione Pathway in the Liver of Zucker Diabetic Fatty Rats
    Food Science and Human Nutrition Publications Food Science and Human Nutrition 11-3-2020 Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats Joe L. Webb Iowa State University Amanda E. Bries Iowa State University, [email protected] Brooke Vogel Iowa State University Claudia Carrillo Iowa State University, [email protected] Lily Harvison Iowa State University, [email protected] See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/fshn_hs_pubs Part of the Dietetics and Clinical Nutrition Commons, Endocrinology, Diabetes, and Metabolism Commons, Exercise Science Commons, Food Chemistry Commons, Human and Clinical Nutrition Commons, and the Molecular, Genetic, and Biochemical Nutrition Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ fshn_hs_pubs/38. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats Abstract Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM.
    [Show full text]
  • Epistasis-Driven Identification of SLC25A51 As a Regulator of Human
    ARTICLE https://doi.org/10.1038/s41467-020-19871-x OPEN Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import Enrico Girardi 1, Gennaro Agrimi 2, Ulrich Goldmann 1, Giuseppe Fiume1, Sabrina Lindinger1, Vitaly Sedlyarov1, Ismet Srndic1, Bettina Gürtl1, Benedikt Agerer 1, Felix Kartnig1, Pasquale Scarcia 2, Maria Antonietta Di Noia2, Eva Liñeiro1, Manuele Rebsamen1, Tabea Wiedmer 1, Andreas Bergthaler1, ✉ Luigi Palmieri2,3 & Giulio Superti-Furga 1,4 1234567890():,; About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction- driven functional gene deorphanization. 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics,
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Overview of Research on Fusion Genes in Prostate Cancer
    2011 Review Article Overview of research on fusion genes in prostate cancer Chunjiao Song1,2, Huan Chen3 1Medical Research Center, Shaoxing People’s Hospital, Shaoxing University School of Medicine, Shaoxing 312000, China; 2Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China; 3Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310000, China Contributions: (I) Conception and design: C Song; (II) Administrative support: Shaoxing Municipal Health and Family Planning Science and Technology Innovation Project (2017CX004) and Shaoxing Public Welfare Applied Research Project (2018C30058); (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: C Song; (V) Data analysis and interpretation: H Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chunjiao Song. No. 568 Zhongxing Bei Road, Shaoxing 312000, China. Email: [email protected]. Abstract: Fusion genes are known to drive and promote carcinogenesis and cancer progression. In recent years, the rapid development of biotechnologies has led to the discovery of a large number of fusion genes in prostate cancer specimens. To further investigate them, we summarized the fusion genes. We searched related articles in PubMed, CNKI (Chinese National Knowledge Infrastructure) and other databases, and the data of 92 literatures were summarized after preliminary screening. In this review, we summarized approximated 400 fusion genes since the first specific fusion TMPRSS2-ERG was discovered in prostate cancer in 2005. Some of these are prostate cancer specific, some are high-frequency in the prostate cancer of a certain ethnic group. This is a summary of scientific research in related fields and suggests that some fusion genes may become biomarkers or the targets for individualized therapies.
    [Show full text]
  • RNA-Seq Reveals Conservation of Function Among the Yolk Sacs Of
    RNA-seq reveals conservation of function among the PNAS PLUS yolk sacs of human, mouse, and chicken Tereza Cindrova-Daviesa, Eric Jauniauxb, Michael G. Elliota,c, Sungsam Gongd,e, Graham J. Burtona,1, and D. Stephen Charnock-Jonesa,d,e,1,2 aCentre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom; bElizabeth Garret Anderson Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom; cSt. John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom; dDepartment of Obstetrics and Gynaecology, University of Cambridge, Cambridge, CB2 0SW, United Kingdom; and eNational Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0QQ, United Kingdom Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved May 5, 2017 (received for review February 14, 2017) The yolk sac is phylogenetically the oldest of the extraembryonic yolk sac plays a critical role during organogenesis (3–5, 8–10), membranes. The human embryo retains a yolk sac, which goes there are limited data to support this claim. Obtaining experi- through primary and secondary phases of development, but its mental data for the human is impossible for ethical reasons, and importance is controversial. Although it is known to synthesize thus we adopted an alternative strategy. Here, we report RNA proteins, its transport functions are widely considered vestigial. sequencing (RNA-seq) data derived from human and murine yolk Here, we report RNA-sequencing (RNA-seq) data for the human sacs and compare them with published data from the yolk sac of and murine yolk sacs and compare those data with data for the the chicken.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Download Functionalities Provided by Each of the PCAWG Data Resources
    UC Santa Cruz UC Santa Cruz Previously Published Works Title A user guide for the online exploration and visualization of PCAWG data. Permalink https://escholarship.org/uc/item/1pb4z60d Journal Nature communications, 11(1) ISSN 2041-1723 Authors Goldman, Mary J Zhang, Junjun Fonseca, Nuno A et al. Publication Date 2020-07-07 DOI 10.1038/s41467-020-16785-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-020-16785-6 OPEN A user guide for the online exploration and visualization of PCAWG data ✉ Mary J. Goldman 1,15 , Junjun Zhang 2,15, Nuno A. Fonseca 3,15, Isidro Cortés-Ciriano 4,5,14,15, Qian Xiang 2, Brian Craft1, Elena Piñeiro-Yáñez 6, Brian D. O’Connor7, Wojciech Bazant3, Elisabet Barrera3, Alfonso Muñoz-Pomer3, Robert Petryszak3, Anja Füllgrabe 3, Fatima Al-Shahrour 6, Maria Keays3, David Haussler 1, John N. Weinstein 8, Wolfgang Huber 9, Alfonso Valencia10,11, Peter J. Park 4, Irene Papatheodorou 3, Jingchun Zhu1, Vincent Ferretti12 & Miguel Vazquez 9,13 1234567890():,; The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan- Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole gen- ome sequencing data from 2658 cancers across 38 tumor types, we provide a user’s guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout.
    [Show full text]
  • Prostate Cancer Risk and Recurrence the Role of Nutrition and Clinical Aspects
    Prostate cancer risk and recurrence the role of nutrition and clinical aspects Dieuwertje E.G. Kok Thesis committee Promoters Prof. dr. ir. E. Kampman Personal chair at the Division of Human Nutrition Wageningen University Prof. dr. L.A.L.M. Kiemeney Professor of Cancer Epidemiology Radboud University Medical Centre, Nijmegen Co-promoter Dr. ir. L.A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. dr. R.J.A. van Moorselaar VU University Medical Center Amsterdam Dr. B.A.J. Verhage Maastricht University Dr. ir. W.M. van Weerden Erasmus MC, Rotterdam Prof. dr. ir. F.J. Kok Wageningen University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Prostate cancer risk and recurrence the role of nutrition and clinical aspects Dieuwertje E.G. Kok Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 29 January 2013 at 11.00 a.m. in the Aula. Dieuwertje E.G. Kok Prostate cancer risk and recurrence: the role of nutrition and clinical aspects, 172 pages PhD thesis, Wageningen University, Wageningen, the Netherlands (2013) With references, with summary in Dutch ISBN 978-94-6173-301-6 Abstract Background Prostate cancer is the most common cancer among men in Western countries. Knowledge on prostate cancer aetiology is required for identification of high-risk groups, optimization of treatment strategies, and development of prevention programs.
    [Show full text]
  • Transcriptomic Analysis of Granulosa Cell Populations Proximal and Distal
    www.nature.com/scientificreports OPEN Transcriptomic analysis of granulosa cell populations proximal and distal to the germinal disc of chicken preovulatory follicles Guoqiang Zhu1, Chao Fang1, Chunheng Mo1, Yajun Wang1, Yan Huang2* & Juan Li1* Within the oocytes of chicken preovulatory follicles, the engulfed yolk constitutes 99% of the oocyte content, while the small germinal disc (GD) (which contains the nucleus and 99% ooplasm) occupies only less than 1%. Relative to the position of the GD, the single granulosa cell layer surrounding the oocyte can be sub-divided into two sub-populations: granulosa cells proximal (named Gp cells) and distal (Gd cells) to the GD. It was reported that Gp cells and Gd cells difer in their morphology, proliferative rate and steroidogenic capacity, however, the underlying mechanism controlling granulosa cell heterogeneity remains unclear. Here we analyzed the transcriptomes of Gd and Gp cells of preovulatory (F5 and F1) follicles in chicken ovaries. We found that: (1) genes associated with cell cycle and DNA replication (CDK1, CCNB3 etc.) have comparatively higher expression levels in Gp cells than in Gd cells, while genes associated with steroidogenesis (CYP51A1, DHCR24) are highly expressed in Gd cells, indicating that Gp cells are likely more mitotic and less steroidogenic than Gd cells; (2) genes associated with extracellular matrix remodeling, cell adhesion and sperm binding (ZP3, ZP2) are diferentially expressed in Gp and Gd cells; (3) Furthermore, signaling molecules (WNT4/ IHH) and receptors for NGF (NGFR), epidermal growth factor (EGFR), gonadotropins (FSHR/LHR) and prostaglandin (PTGER3) are abundantly but diferentially expressed in Gp and Gd cells. Taken together, our data strongly supports the notion that Gp and Gd cells of preovulatory follicles difer in their proliferation rate, steroidogenic activity, ECM organization and sperm binding capacity, which are likely controlled by gonadotropins and local ovarian factors, such as GD-derived factors.
    [Show full text]