Post-Seminal Development and Cryopreservation of Endemic Or Endangered Bromeliads
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al. -
Air-Pollutant-Philic Plants for Air Remediation
Journal of Environmental Protection, 2012, 3, 1346-1352 1 http://dx.doi.org/10.4236/jep.2012.310153 Published Online October 2012 (http://www.SciRP.org/journal/jep) Air-Pollutant-Philic Plants for Air Remediation Misa Takahashi, Hiromichi Morikawa Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan. Email: [email protected] Received July 23rd, 2012; revised August 24th, 2012; accepted September 19th, 2012 ABSTRACT In this communication, we review our work over two decades on air-pollutant-philic plants that can grow with air pol- lutants as the sole nutrient source. We believe that such plants are instrumental in mitigating air pollution. Our target air pollutant has been atmospheric nitrogen dioxide (NO2), and our work on this subject has consisted of three parts: Varia- tion in plants’ abilities to mitigate air pollutants among naturally occurring plants, genetic improvement of plants’ abili- ties to mitigate air pollutants, and the plant vitalization effect of NO2. So far, an estimation of the half-life of nitrogen derived from NO2 uptake in plants belonging to the 217 taxa studied to date has shown no plants to be naturally occur- ring air-pollutant-philic. However, we found that an enormous difference exists in plants’ ability to uptake and assimi- late atmospheric NO2. Future studies on the causes of this process may provide an important clue to aid the genetic production of plants that are effectively air-pollutant-philic. Both genetic engineering of the genes involved in the pri- mary nitrate metabolism and genetic modification by ion-beam irradiation failed to make plants air-pollutant-philic, but mutants obtained in these studies will prove useful in revealing those genes critical in doing so. -
Cultivo De Tillandsia Geminiflora Brongn. Em Diferentes Substratos(1)
NOTA Cultivo de Tillandsia geminiflora Brongn. em diferentes substratos(1) MARIA ESMERALDA SOARES PAYÃO DEMATTÊ(2) e ULA VIDAL(3) RESUMO Tillandsia geminiflora é uma bromélia pouco cultivada no Brasil, mas com potencial para exportação. Para cultivo de bromélias, o xaxim entrava na composição de substratos, até a proibição desta prática. A substituição do xaxim por outros materiais com propriedades semelhantes tem sido pesquisada, e o objetivo deste trabalho foi comparar o desenvolvimento de T. geminiflora em substratos à base de componentes vegetais (xaxim, fibra de coco e casca de Pinus). As observações foram feitas por cerca de dois anos. Casca de coco pura proporcionou os melhores resultados. Palavras-chave: bromélias, xaxim, fibra de coco, casca dePinus . ABSTRACT Cultivation of Tillandsia geminiflora Brongn. in different growing media Tillandsia geminiflora is little grown in Brazil, but has good potential for exportation. Tree fern fiber was used in mixtures for bromeliad cultivation until the prohibition of this practice. The replacement of tree fern by other materials with similar properties has been researched. Thus, and the aim of this study was to compare the development of T. geminiflora grown in media with different vegetal components (tree fern, coconut husk and pinus bark). Plant development was evaluated for about two years. Pure coconut bark husk gave the best results. Keywords: bromeliads, tree fern fiber, coconut husk, pinus bark. 1. INTRODUÇÃO A base para a preparação de substratos para bromélias no Brasil foi, durante muito tempo, o xaxim (ANDRADE T. geminiflora (Figura 1), uma bromélia epífita, ocorre e DEMATTÊ, 1999), retirado de Dicksonia sellowiana no Brasil, no Paraguai e na Argentina. -
Floristic Composition of a Neotropical Inselberg from Espírito Santo State, Brazil: an Important Area for Conservation
13 1 2043 the journal of biodiversity data 11 February 2017 Check List LISTS OF SPECIES Check List 13(1): 2043, 11 February 2017 doi: https://doi.org/10.15560/13.1.2043 ISSN 1809-127X © 2017 Check List and Authors Floristic composition of a Neotropical inselberg from Espírito Santo state, Brazil: an important area for conservation Dayvid Rodrigues Couto1, 6, Talitha Mayumi Francisco2, Vitor da Cunha Manhães1, Henrique Machado Dias4 & Miriam Cristina Alvarez Pereira5 1 Universidade Federal do Rio de Janeiro, Museu Nacional, Programa de Pós-Graduação em Botânica, Quinta da Boa Vista, CEP 20940-040, Rio de Janeiro, RJ, Brazil 2 Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Av. Alberto Lamego, 2000, CEP 29013-600, Campos dos Goytacazes, RJ, Brazil 4 Universidade Federal do Espírito Santo (CCA/UFES), Centro de Ciências Agrárias, Departamento de Ciências Florestais e da Madeira, Av. Governador Lindemberg, 316, CEP 28550-000, Jerônimo Monteiro, ES, Brazil 5 Universidade Federal do Espírito Santo (CCA/UFES), Centro de Ciências Agrárias, Alto Guararema, s/no, CEP 29500-000, Alegre, ES, Brazil 6 Corresponding author. E-mail: [email protected] Abstract: Our study on granitic and gneissic rock outcrops environmental filters (e.g., total or partial absence of soil, on Pedra dos Pontões in Espírito Santo state contributes to low water retention, nutrient scarcity, difficulty in affixing the knowledge of the vascular flora of inselbergs in south- roots, exposure to wind and heat) that allow these areas eastern Brazil. We registered 211 species distributed among to support a highly specialized flora with sometimes high 51 families and 130 genera. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
Generico Cialis on Line
BROMELIAD SOCIETY OF SAN FRANCISCO SEPTEMBER 2018 Meeting Specifics When: Thursday, September 20 Designing With Palms: Time: 07:30 PM Companion Plant Topic San Francisco County Fair Where: Building Palms are a landscape staple in warm, temperate climates worldwide. But these stunning and statement-making plants 9th Avenue at Lincoln Way are large, expensive, and difficult to install, resulting in San Francisco unique design challenges. In Designing with Palms, palm expert Jason Dewees details every major aspect of designing and caring for palms. Jason shares his expertise in plants, and especially palms, with designers, landscape architects, botanical garden curators, municipalities, and gardeners, always with an eye to design. Jason helps identify and source the best varieties based on the design intention and requirements, growing conditions, and market availability. Roger Lane has signed up for refreshments this month. Any additional refreshments are appreciated. Thanks in advance! September 2018 August Meeting Cristy Brenner took us to the Roraima tepui, inspiration for Sir Arthur Conan Doyle’s The Lost World Last month, Cristy Brenner best trips in her life. were more experienced hikers and gave us a slide show on her kept way head of Cristy and Betty. trip to the Roraima tepui in The first day’s hike was 2013. Cristy made this trip relatively easy and somewhat Cristy showed us slides of Brocchinia with Betty Paterson who has level. After this, the climb was hechtioides that is similar to one spoken to our society several against the rock walls of the found on the Auyan tepui (the first times about some of her many tepui. -
Vee's Crypt House by Ray Clark
Vol 42 Number 1 January, February & March 2018 PUBLISHED BY: Editor- Derek Butcher. Assist Editor – Bev Masters Born 1977 and still offsetting!' COMMITTEE MEMBERS President: Adam Bodzioch 58 Cromer Parade Millswood 5034 Ph: 0447755022 Secretary: Bev Masters 6 Eric Street, Plympton 5038 Ph: 83514876 Vice president: Peter Hall Treasurer: Trudy Hollinshead Committee: Penny Seekamp Julie Batty Dave Batty Sue Sckrabei Jeff Hollinshead Kallam Sharman Pam Nelson Ian Cook Life members: Margaret Butcher, Derek Butcher, : Len Colgan, Adam Bodzioch : Bill Treloar Email address: Meetings Venue: Secretary – [email protected] Maltese Cultural Centre, Web site: http://www.bromeliad.org.au 6 Jeanes Street, Cultivar Register http://botu07.bio.uu.nl/bcg/bcr/index.php Beverley List for species names http://botu07.bio.uu.nl/bcg/taxonList.php http://botu07.bio.uu.nl/brom-l/ altern site http://imperialis.com.br/ FOLLOW US ON FACEBOOK Pots, Labels & Hangers - Small quantities available all meetings. Time: 2.00pm. Second Sunday of st For special orders/ larger quantities call Ron Masters on 83514876 each month. Exceptions –1 Sunday in March, May, June & 3rd Sunday September. - or unless advised otherwise (see dates below). No meeting in December VISITORS & NEW MEMBERS WELCOME. B. Obi-Wan (Photo J. Batty) MEETING & SALES 2018 DATES 08/4/2018 (Safety in the garden-Ray Clark), 06/5/2018- 1st SUNDAY (Workshop- pups, soils etc), 3/6/2018-1st SUNDAY (Guest speaker)- Len Colgan 8/7/2018 (Challenges growing Brom’s), 12/8/2018(Winter brag) 16/9/2018-3rd SUNDAY (Plants from Interstate), 14/10/2018 (to be advised), 27/10/2018 & 28/10/2018 Show & Sales, 11/11/2018 -130PM start, pup exchange, special afternoon tea – bring a plate of finger food to share, plant auction. -
Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution Pecies
Check List 8(4): 832–838, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution PECIES S remnant in southeastern Brazil OF Floristic composition of a freshwater * swamp forest ISTS L Júlio H. Ribeiro Magalhães and Rita C. S. Maimoni-Rodella Botucatu, SP, Brazil. Universidade Estadual Paulista,[email protected] Instituto de Biociências, Departamento de Botânica. Distrito de Rubião Júnior. Caixa Postal 510, CEP 18618-000. * Corresponding author. E-mail: Abstract: The floristic composition in a freshwater swamp forest remnant located in the municipality of Botucatu, São Paulo state, Brazil, was studied. Only Angiosperms were collected in the area by means of random walks. A total of 92 species withwere aregistered. continuous The canopy families and with an inferior greater tree species layer richness composed were: mainly Orchidaceae by individuals (17 species), of Euterpe Rubiaceae edulis Mart.. (8) and A comparison Myrtaceae among(5). The the arboreal angiosperms component of the was study predominant. area and those The profile of ten swampdiagram forests of the vegetationin São Paulo showed state suggests a well-defined that the stratification, geographic position and other ecologic peculiarities of these forests, besides soil flooding, are factors that can influence their similarity concerning the floristic composition. Introduction municipality covers an area of 1495 km2, and has three Among the several vegetation formations found in distinct physiographic regions: one located in the area Brazil, the freshwater swamp forests are very peculiar called Peripheral Depression, with altitudes ranging from 400 to 600 meters, an intermediate region (or transition zone) composed by a slope, and one located at the top coverand occur a quite in permanently limited area, floodedconsidering soil. -
Adaptive Radiation, Correlated and Contingent Evolution, and Net Species Diversification in Bromeliaceae
Molecular Phylogenetics and Evolution 71 (2014) 55–78 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae Thomas J. Givnish a,*, Michael H.J. Barfuss b, Benjamin Van Ee c, Ricarda Riina d, Katharina Schulte e,f, Ralf Horres g, Philip A. Gonsiska a, Rachel S. Jabaily h, Darren M. Crayn f, J. Andrew C. Smith i, Klaus Winter j, Gregory K. Brown k, Timothy M. Evans l, Bruce K. Holst m, Harry Luther n, Walter Till b, Georg Zizka e, Paul E. Berry o, Kenneth J. Sytsma a a Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA b Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria c School of Natural Sciences, Black Hills State University, Spearfish, SD 57799, USA d Real Jardín Botánico, CSIC, Plaza de Murillo 2, Madrid 28014, Spain e Department of Botany and Molecular Evolution, Research Institute Senckenberg and J.W. Goethe University, Frankfurt am Main D-60325, Germany f Australian Tropical Herbarium, James Cook University, Cairns, QLD 4878, Australia g GenXPro, Frankfurt am Main 60438, Germany h Department of Biology, Rhodes College, Memphis, TN 38112, USA i Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom j Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama k Department of Botany, University of Wyoming, Laramie, WY 82071, USA l Department of Biology, Grand Valley State University, Allendale, MI 49401, USA m Marie Selby Botanical Gardens, Sarasota, FL 34236, USA n Gardens By The Bay, National Parks Board Headquarters, Singapore 259569, Singapore o Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: We present an integrative model predicting associations among epiphytism, the tank habit, entangling Received 22 May 2013 seeds, C3 vs. -
Dyckia Tubifilamentosa (Pitcairnioideae-Bromeliaceae): a New Species from Northeastern Brazil)
Hoehnea 41(2): 315-319, 2 fig., 2014 Nota científica / Scientific note Dyckia tubifilamentosa(Pitcairnioideae-Bromeliaceae): a new species from Northeastern Brazil Maria das Graças Lapa Wanderley1,4, Gardene Maria de Sousa2 and Marccus Alves3 Received: 27.03.2014; accepted: 30.05.2014 ABSTRACT - (Dyckia tubifilamentosa (Pitcairnioideae-Bromeliaceae): a new species from Northeastern Brazil). Dyckia tubifilamentosa Wand. & G. Sousa is described and illustrated. It differs from the other species of the genus Dyckia by several distinctive characters, namely: the ovoid shape of the flower buds, the long and exserted staminal tube formed from completely connate white filaments, the anther initially connivent and then divergent, along with the fruit with partially persistent perianth. Dyckia tubifilamentosa is found in some areas of the semiarid region of Northeastern Brazil (Piauí State), growing in the Caatinga and transitional Caatinga-Cerrado biomes. Keywords: Caatinga, neotropics, semiarid RESUMO - (Dyckia tubifilamentosa (Pitcairnioideae-Bromeliaceae): uma nova espécie do Nordeste do Brasil). Dyckia tubifilamentosa Wand. & G. Sousa é aqui descrita e ilustrada. A espécie se distingue das demais do gênero Dyckia pelo botão floral ovoide; tubo estaminal exserto e esbranquiçado, formado pelos filetes completamente conados; anteras coniventes passando a divergentes e fruto com restos de perianto. Dyckia tubifilamentosa é conhecida de algumas áreas da região semiárida do Nordeste do Brasil (estado do Piauí), crescendo na Caatinga e áreas de -
Bat Pollination in Bromeliaceae Pedro A
PLANT ECOLOGY & DIVERSITY https://doi.org/10.1080/17550874.2019.1566409 ARTICLE Bat pollination in Bromeliaceae Pedro A. Aguilar-Rodrígueza, Thorsten Krömer a, Marco Tschapka b,c, José G. García-Francod, Jeanett Escobedo-Sartie and M.Cristina MacSwiney G. a aCentro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Veracruz, Mexico; bInstitute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany; cSmithsonian Tropical Research Institute, Balboa Ancón, Panamá, República de Panamá; dRed de Ecología Funcional, Instituto de Ecología, Xalapa, Veracruz, México; eFacultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Crucero de Tecomán, Tecomán, Colima, México ABSTRACT ARTICLE HISTORY Background: Chiropterophily encompasses the floral traits by which bats are attracted as the Received 2 May 2017 main pollinators. Among the chiropterophilous flowering plants of the New World, Accepted 3 January 2019 Bromeliaceae is one of the most ecologically important families; however, information KEYWORDS about the chiropterophilous interaction in this family is still scarce. Anoura; bromeliads; Aims: We present a comprehensive review of bat pollination in bromeliads, covering floral chiropterophily; floral scent; traits, rewards offered to pollinators, floral attractants and the identity of visiting bat species. nectar; pollination; Werauhia Methods: We discuss traits shared among chiropterophilous bromeliads and present general trends in an evolutionary context. We constructed a phylogenetic tree to elucidate the ancestral pollination syndromes of the 42 extant bromeliad species (ca. 1% of total) known to be bat-pollinated. Results: Most of the species within the ten genera reported belong to the Tillandsioideae subfamily, with three genera appearing to be exclusively bat-pollinated. Floral visitors include 19 bat species of 11 genera from the Phyllostomidae. -
Paula Maria Elbl Espessamento Primário Do
PAULA MARIA ELBL Exemplar corrigido O original encontra-se disponível no Instituto de Biociências da USP. ESPESSAMENTO PRIMÁRIO DO SISTEMA CAULINAR EM POALES: MORFOLOGIA, ANATOMIA, EXPRESSÃO DO GENE SCARECROW STEM PRIMARY THICKENING IN POALES: MORPHOLOGY, ANATOMY AND EXPRESSION OF SCARECROW GENE SÃO PAULO 2012 Paula Maria Elbl Exemplar corrigido O original encontrase disponível no Instituto de Biociências da USP. ESPESSAMENTO PRIMÁRIO DO SISTEMA CAULINAR EM POALES: MORFOLOGIA, ANATOMIA, EXPRESSÃO DO GENE SCARECROW STEM PRIMARY THICKENING IN POALES: MORPHOLOGY, ANATOMY AND EXPRESSION OF SCARECROW GENE Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica Orientador(a): Nanuza Luiza de Menezes Co-orientadora: Maria Magdalena Rossi. SÃO PAULO 2012 Ficha Catalográfica Elbl, Paula Maria Espessamento primário do sistema caulinar de Poales: morfologia, anatomia, expressão do gene scarecrow Stem Primary thickening of Poales: morphology, anatomy and expression of scarecrow gene 201 páginas Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica 1. Palavra-Chave Principal 2. Palavra-Chave Secundária 3. Palavra-Chave Secundária (os itens 2 e 3 são opcionais) I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora ___________________________________ __________________________________ Prof(a). Dr(a). Prof(a). Dr(a). ___________________________________ _________________________________ Prof(a). Dr(a). Prof(a). Dr(a). Profa. Dra. Nanuza Luiza de Menezes Orientador(a) Dedico esta tese aos meus amados pais. 8 Agradecimentos Seria impossível citar aqui o nome de todos que, direta ou indiretamente me ajudaram ao longo desta jornada. Foram quatro longos anos de muitos momentos felizes e outros nem tanto, nos quais pude aprender muito e também passar o meu conhecimento adiante.