Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation

Total Page:16

File Type:pdf, Size:1020Kb

Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation University of Pennsylvania ScholarlyCommons Theses (Historic Preservation) Graduate Program in Historic Preservation 2016 Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation Grace Meloy University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/hp_theses Part of the Historic Preservation and Conservation Commons Meloy, Grace, "Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation" (2016). Theses (Historic Preservation). 608. https://repository.upenn.edu/hp_theses/608 Suggested Citation: Meloy, Grace (2016). Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/hp_theses/608 For more information, please contact [email protected]. Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation Abstract Architectural precast concrete wall panels played an important role in mid-twentieth century architecture by providing a concrete technology that could be applied to the curtain wall system of construction utilized in this time period. Moreover, the precasting process, which enabled the controlled production of expressive facing concrete mixes and surface treatments and finishes, made this a concrete technology that could contribute to the architectural expression of the building. To promote the preservation of these panels, this thesis investigates and illuminates their historical and architectural significance in the United States in the mid-twentieth century. There are, however, numerous technical challenges to the physical preservation of architectural precast wall panels, the most significant of which is due ot their specially designed concrete mix and surface finish. Given the importance of preserving these characteristics, the general retroactive preservation action of applying patches to deteriorated concrete is unsatisfactory; instead, we must adopt a preventive approach. Towards this end, this thesis examines documents published in the United States between 1945 and 1975 that informed the design, production, and assembly of architectural precast wall panels. The information from these documents is used to trace the technological evolution of these panels and, ultimately, to identify potential material vulnerabilities and associated deterioration mechanisms to which they may be subject. This methodology provides foundational information to be used in the creation of preventive conservation plans for buildings constructed with this concrete technology. Keywords cast stone, concrete masonry units, American Concrete Institute, Precast/Prestresse d Concrete Institute, MoSai Disciplines Historic Preservation and Conservation Comments Suggested Citation: Meloy, Grace (2016). Architectural Precast Concrete Wall Panels: Their Technological Evolution, Significance, and Preservation. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/hp_theses/608 ARCHITECTURAL PRECAST CONCRETE WALL PANELS: THEIR TECHNOLOGICAL EVOLUTION, SIGNIFICANCE, AND PRESERVATION Grace Meloy A THESIS in Historic Preservation Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements of the Degree of MASTER OF SCIENCE IN HISTORIC PRESERVATION 2016 ________________________________________ Advisor Michael C. Henry, PE, AIA Adjunct Professor of Architecture ________________________________________ Program Chair Randall F. Mason, PhD Associate Professor ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Michael C. Henry, PE, AIA. He pushed me throughout this thesis process, and throughout my two years in the University of Pennsylvania’s Historic Preservation program more broadly, to always think critically and consider how the gap between engineering and preservation may be bridged. This thesis allowed me to explore both of these fields, and Michael Henry’s encouragement was essential. I would also like to thank Randall Mason, Frank Matero, and the rest of the Historic Preservation faculty for their guidance and support over the last two years. From their teaching, I have learned more about preservation than I could have ever imagined. Additionally, I would like to thank my classmates for all of the wonderful and critical conversations we have had, and I hope we will continue to have, about preservation and its place in the world. It has been a pleasure to work with you. Finally, I want to thank my family and friends for their efforts to appreciate my interest in preserving concrete; I hope this topic has become a little more intriguing after all of our conversations. In particular, Alex Host read and edited my thesis in its entirety, and for that I am exceedingly grateful. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................................... II LIST OF FIGURES ...................................................................................................................................... V LIST OF TABLES ..................................................................................................................................... VII CHAPTER 1: INTRODUCTION............................................................................................................... 1 CHAPTER 2: EARLY PRECAST CONCRETE BUILDING PRODUCTS—THE DEVELOPMENT OF ARCHITECTURAL PRECAST WALL PANELS .............................................. 6 Introduction ....................................................................................................................................................... 6 History of Reinforced Concrete .................................................................................................................. 6 Obstacles to Architectural Use of Reinforced Concrete ................................................................... 8 The Predecessors of Architectural Precast Wall Panels ................................................................ 12 Nascent Architectural Precast Wall Panels ......................................................................................... 16 World War II and Concrete ........................................................................................................................ 22 Conclusion......................................................................................................................................................... 23 CHAPTER 3: APPLICATION OF ARCHITECTURAL PRECAST WALL PANELS IN MID‐CENTURY ARCHITECTURE ....................................................................................................... 24 Development of the Curtain Wall System ............................................................................................ 24 Flourishing of Architectural Precast Wall Panels ............................................................................. 2 9 Modernist Architects and Architectural Precast Wall Panels ...................................................... 31 Variety of Buildings and Aesthetics ........................................................................................................ 37 Preservation Implications .......................................................................................................................... 45 CHAPTER 4: LITERATURE REVIEW—PATHOLOGIES AND PRESERVATION OF ARCHITECTURAL PRECAST WALL PANELS ................................................................................. 48 Introduction ..................................................................................................................................................... 48 Reinforced Concrete Pathologies ............................................................................................................ 48 Deterioration of Architectural Precast Wall Panels ........................................................................ 53 Deterioration Detection Methods ........................................................................................................... 55 Current Architectural Precast Wall Panel Preservation Strategies .......................................... 57 Conservation Strategies with Potential ................................................................................................ 58 Towards a Preventive Conservation Approach ................................................................................. 61 Conclusion......................................................................................................................................................... 64 CHAPTER 5: TECHNOLOGICAL EVOLUTION OF ARCHITECTURAL PRECAST WALL PANELS, 1945‐1975 ................................................................................................................ 65 Introduction ..................................................................................................................................................... 65 Precast’s Potential: 1945‐1950 ................................................................................................................ 67 1950‐1965: Pre‐ACI Symposium ............................................................................................................
Recommended publications
  • Guide to Concrete Repair Second Edition
    ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A.
    [Show full text]
  • Reinforcing Steel Cover When Reinforcing Steel Is Too Close to the Surface, It Begins Rusting and Expanding, Causing the Surrounding Concrete to Break Away
    BRANZ FACTS MID-RISE BUILDINGS #4 Exposed issues – reinforcing steel cover When reinforcing steel is too close to the surface, it begins rusting and expanding, causing the surrounding concrete to break away. STEEL REINFORCING BARS are used in concrete and concrete masonry to provide resistance to tensile loads and for concrete slabs and panels to help limit the risk of shrinkage cracking as the material cures. The steel relies on being sufficiently deep (called cover) within the concrete to protect it from moisture and corrosion. Where it is too close to the surface or the concrete is poor quality, it will begin rusting. As steel rusts, it expands, and this can result in concrete spalling – where pieces of concrete are broken away by the expanding steel. As the concrete breaks away or cracks, more moisture can get in and the deterioration will accelerate. The corrosion will also reduce the tensile strength of the steel as the steel deteriorates. How much cover? How much cover depends on: NZS 4229:2013 Concrete masonry buildings Tables 1 and 2 outline the requirements ● what the steel is embedded in – concrete not requiring specific engineering design: from NZS 3101.1&2:2006 Concrete structures or the grouted cells of concrete masonry ● For concrete masonry: standard. ● concrete or grout strength • 45 mm in exposure zone B For concrete masonry structures built to ● what the surface of the concrete is • 50 mm in exposure zone C NZS 4229:2013, the cover requirements from exposed to – soil or air • 60 mm in exposure zone D. the external face of uncoated masonry are: ● the corrosion or environmental zone ● For concrete: ● for exposure zone B – 45 mm with 17.5 ● the type of steel used – mild steel, • 75 mm for concrete placed directly on MPa grout galvanised, stainless steel or against the ground (can be reduced ● for exposure zone C – 50 mm with 20 ● intended life of the structure to 50 mm where there is a DPM MPa grout ● cement type.
    [Show full text]
  • Types of Piles: Their Characteristics and General Use BERNARD A
    Types of Piles: Their Characteristics and General Use BERNARD A. GRAND, Hardesty and Hanover This paper presents a review of the current practice and usage of the numerous types of pile in general construction. Information on this sub­ ject was obtained from a review of existing literature and from field ex­ perience. The paper reviews the purpose of pile foundations and the various factors involved in the selection of a type of pile.. Emphasis is placed on the general, physical, and structural characteristics of the piles as well as durability and fabrication. Data are presented on the inherent advantages and disadvantages of the various types of piles and on corre­ sponding optimum pile length and load range. Information and data are presented on the field problems of pile installations and the proper meth­ od of handling and treabnent to avoid damage or failure of critical pile sections. The fundamental information is supplemented by case histories. •PILE FOUNDATIONS of timber were in use in ancient times. In its earliest form, a pile foundation consisted of rows of timber stakes driven into the ground. Pile founda­ tions such as these were used by the ancient Aztecs in North America. The Romans made frequent use of pile foundations as recorded by Vitruvius in 59 AD. Pile founda­ tions for ancient Roman dwellings have been found in Lake Lucerne. It is reported that during the rule of Julius Caesar a pile-supported bridge was constructed across the Rhine River. The durability of timber piles is illustrated ill the report of the reconstruction of an ancient bridge in Venice in 1902.
    [Show full text]
  • Reinforcing Footings Cover Do You Know the Minimum Bending Diameter for Reinforcing Steel and Its Cover
    MINIMUM DIMENSIONS AND COVER FOR CONCRETE FOOTINGS WITH REINFORCING STEEL BUILD RIGHT Reinforcing footings cover Do you know the minimum bending diameter for reinforcing steel and its cover BY TREVOR PRINGLE, requirements in concrete footings? This determines the minimum width you ANZIA, BRANZ PRINCIPAL need to make your concrete footings. WRITER SOME DIMENSIONS GIVEN in NZS 3604:2011 Bending diameters 5 × bar diameter ● the bar diameter Timber-framed buildings for reinforced concrete For foundation walls to concrete slabs, the ● the bar bend diameter. foundation footings may be insufficient. This horizontal bars are typically D12 and the is due to the bending diameters and minimum vertical starter bars are R10. Two D12s stacked concrete cover required for steel reinforcing in Minimum bending diameters for reinforcing For a foundation non-cantilevered wall using concrete footings. steel are given in Tables 8.1 and 8.2 of NZS two D12s horizontally with R10s vertically, the 3101.1&2:2006 Concrete structures standard. minimum width (see Figure 1) will be: Footing widths in NZS 3604:2011 According to Table 8.1, the bending diameter ● cover on each side: 2 × 75 mm = 150 mm NZS 3604:2011 section 7.5 sets out require- for 6–20 mm diameter deformed and plain ● vertical bar diameter: 2 × 10 mm = 20 mm ments for reinforced concrete foundation walls steel reinforcing bars must be at least five ● minimum bend diameter: 5 × 10 mm = and footings for concrete slabs on ground. times the bar diameter. Therefore, the 50 mm. Figures 7.13(B), 7.14(B and C) and 7.16 (B and C) reinforcing bar minimum bending diameter This gives a minimum foundation width of give minimum footing width dimensions.
    [Show full text]
  • Rational Design of Hollow Core Planks for Fire Resistance
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2012, 3 (5):2830-2836 ISSN: 0976-8610 CODEN (USA): AASRFC Rational design of hollow core planks for fire resistance Md Azree Othuman Mydin and Mahyuddin Ramli School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Penang, Malaysia _____________________________________________________________________________________________ ABSTRACT The utilization of precast hollow core plank systems in multi-storey buildings is prevalent these days. This is due to small onsite labour cost and high quality control. Precast hollow core planks are most extensively known for providing economical, efficient floor and roof systems. When properly matched for alignment, the voids in a hollow core planks may perhaps be utilized for electrical or mechanical runs. Among different precast plank systems, prestressed hollow core planks are the most well accepted system because of their lightweight nature and the economical use of concrete. Yet the structural behaviour of such systems under fire exposure is not clear-cut to be predicted because of the complex geometry, composite construction and an extensive range of possible support conditions. The aim of this paper is to discuss the characteristics of hollow core planks and the advantages of this system. Additionally, evaluation on the requirements and recommendations to the fire design of concrete planks from different standards will also be presented. These requirements will form the framework of future research focuses on providing a new method for the fire design of structures with hollowcore concrete plank systems. Keywords : Precast planks, flooring system, slab system, fire design, hollow core slab, fire resistance _____________________________________________________________________________________________ INTRODUCTION The precast concrete plank systems are becoming established and well accepted in many countries throughout the world due to low onsite labour cost and high quality control.
    [Show full text]
  • Construction of Tremie Concrete Cutoff Wall, Wolf Creek Dam, Kentucky
    c / y (y ¥ f t D n a a n in_r uir D 0!ID§Ii I <__ -j M IS C E L L A N E O U S PAPER SL-80-10 CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, WOLF CREEK DAM, KENTUCKY by Terence C. Holland, Joseph R. Turner Structures Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1980 Final Report Approved For Public Release; Distribution Unlimited Prepared for Office, Chief of Engineers, U. S. Army TA Washington, D. C. 20314 7 .W34m Under C W IS 3 I5 5 3 SL-80-10 1980 », Ar ' \ 8 ;v ;>"* % * OCT 2 7 1980 Water & : as Service Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. SURÈAU OF RECLAMATrON DENVER u *W ff \& A /P 92059356 \y£ ,\s> , *c£p £ > b <0 Unclassified V * ie05*l35Ï.V SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) O' READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER Miscellaneous Paper SL-80-10 ' 4. T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED V CONSTRUCTION OF TREMIE CONCRETE CUTOFF WALL, Final report WOLF CREEK DAM, KENTUCKY 6.
    [Show full text]
  • Flexural Cracking in Concrete Structures
    22 TRANSPORTATION RESEARCH RECORD 1301 Flexural Cracking in Concrete Structures EDWARD G. NAWY The state-of-the-art in the evaluation of the flexural crack width Although the macrocracking aspects of cracking behavior development and crack control of macrocracks is described. It is are emphasized, it is also important to briefly discuss micro­ based on extensive research over the past 50 years in the United cracking. States and overseas in the area of macrocracking in reinforced and prestressed concrete beams and two-way-action slabs and plates. Control of cracking has become essential to maintain the integrity and aesthetics of concrete structures. The trends are MICROCRACKING stronger than ever-toward better use of concrete strength, use of higher-strength concretes including superstrength concretes of over 20,000-psi compressive strength, use of more prestressed Microcracking can be mainly classified into two categories: concretes, and increased use of limit failure theories-all re­ (a) bond cracks at the aggregate-mortar interface, and (b) quiring closer control of serviceability requirements of cracking paste cracks within the mortar matrix. Interfacial bond cracks and deflection behavior. Common expressions are discussed for are caused by interfacial shear and tensile stresses caused by the control of cracking in reinforced-concrete beams and thick early volumetric change without the presence of external load. one-way slabs; prestressed, pretensioned, and posttensioned flanged Volume change caused by hydration and shrinkage could cre­ beams; and reinforced-concrete, two-way-action, structural floor slabs and plates. In addition, recommendations are given for the ate tensile and bond stresses of sufficient magnitude to cause maximum tolerable flexural crack widths in concrete elements.
    [Show full text]
  • Alkali-Aggregate Reactions 162 163
    161 Session A7: ALKALI-AGGREGATE REACTIONS 162 163 Alkali release from typical Danish aggregates to potential ASR reactive concrete Hans Chr. Brolin Bent Grelk Thomsen M.Sc, Chief Consultant M.Sc Grelk Consult DTU Civil Engineering [email protected] Brovej, Building 118 DK - 2800 Kgs. Lyngby [email protected] Ricardo Antonio Kurt Kielsgaard Hansen Barbosa Associated professor, Ph.D. Ph.D. DTU Civil Engineering DTU Civil Engineering Brovej, Building 118 Brovej, Building 118 DK - 2800 Kgs. Lyngby DK - 2800 Kgs. Lyngby [email protected] [email protected] ABSTRACT Alkali-silica reaction (ASR) in concrete is a well-known deterioration mechanism affecting the long term durability of Danish concrete structures. Deleterious ASR cracking can be significantly reduced or prevented by limiting the total alkali content of concrete under a certain 3 threshold limit, which in Denmark is recommended to 3 kg/m Na2Oeq.. However, this threshold limit does not account for the possible internal contribution of alkali to the concrete pore solution by release from aggregates or external contributions from varies sources. This study 3 indicates that certain Danish aggregates are capable of releasing more than 0.46 kg/m Na2Oeq. at 13 weeks of exposure in laboratory test which may increase the risk for deleterious cracking due to an increase in alkali content in the concrete. Key words: Alkali-silica reaction, aggregate, alkali content, durability. 1. INTRODUCTION ASR is a complex physical and chemical reaction between water, alkali in the concrete pore solution and reactive silica minerals in aggregates [1]. The reaction demands an alkaline environment which is found inside the concrete where a natural presence of free calcium hydroxide is found.
    [Show full text]
  • SECTION 03300 CAST-IN-PLACE CONCRETE PART 1 GENERAL 1.01 SUMMARY A. This Section Covers Formwork, Reinforcing Steel, and Cast-In
    SECTION 03300 CAST-IN-PLACE CONCRETE PART 1 GENERAL 1.01 SUMMARY A. This section covers formwork, reinforcing steel, and cast-in-place Concrete work. B. Related Work Specified Elsewhere 1. Manholes: Section 02605 2. Storm Sewer Collection System: Section 02722 C. Measurement and Payment Procedures 1. For public funded capital improvement projects, measurement and payment procedures will be determined on a project by project basis. 2. For privately funded development projects, Owner will determine measurement and payment requirements. 1.02 REFERENCES A. American Concrete Institute (ACI) International 1. ACI 305 – Hot Weather Concreting 2. ACI 306 – Cold Weather Concreting 3. ACI 309 – Standard Practice for Consolidation of Concrete 4. ACI 318 – Building Code Requirements for Structural Concrete and Commentary B. American Society for Testing and Materials (ASTM) 1. ASTM A82 – Standard Specification for Steel Wire, Plain, for Concrete Reinforcement 2. ASTM A185 – Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement 3. ASTM A615 – Deformed and Plain Billet-Steel Bars for Concrete Reinforcement 4. ASTM A996 – Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement 5. ASTM C31 – Making and Curing Concrete Test Specimens in the Field 6. ASTM C33 – Concrete Aggregates 7. ASTM C39 - Compressive Strength of Cylindrical Concrete Specimens 8. ASTM C94 – Ready-Mixed Concrete 9. ASTM C143 – Slump of Hydraulic Cement Concrete 10. ASTM C150 – Portland Cement 11. ASTM C171 – Sheet Materials for Curing Concrete 12. ASTM C231 – Air Content of Freshly Mixed Concrete by the Pressure Method. 13. ASTM C260 – Air-Entraining Admixtures for Concrete 14. ASTM C309 – Liquid Membrane-Forming Compounds for Curing Concrete 15.
    [Show full text]
  • The Symposium Took Place 13Th to 15Th August 2014
    PUBLICATION NO. 50 2/2014 NORDIC CONCRETE RESEARCH EDITED BY THE NORDIC CONCRETE FEDERATION CONCRETE ASSOCIATIONS OF: DENMARK FINLAND ICELAND NORWAY SWEDEN PUBLISHER: NORSK BETONGFORENING POSTBOKS 2312, SOLLI N - 0201 OSLO NORWAY PROCEEDING XXII NORDIC CONCRETE RESEARCH SYMPOSIA REYKJAVIK, ICELAND 2014 iii PUBLICATION NO. 50 2/2014 CONTENTS OPENING SESSION 1 Tor Arne Martius-Hammer 3 COIN - Main Achievements 1 DURABILITY, MAINTENANCE, RENOVATION & FROST ACTION - 7 PER FIDJEST0L MEMORIAL SESSION R. Doug Hooton 9 Advantages of Silica Fume-Slag Ternary Binders for Production of Dura¬ ble Concrete Olafur H. Wallevik, Indri6i Nielsson & Bjorn Hjartarson 13 Self-compacting concrete without chemical admixture for Per Fidjestol Martin Kaasgaard, Claus Pade, UlfJonsson & Christian Munch-Petersen 17 Comparison of Durability Parameters of Self-Compacting Concrete and Conventional Slump Concrete Designed for Marine Environment Marianne Tange Hasholt 21 The Interplay Between Inner and Outer Frost Damage and its Implication for Accelerated Freeze-Thaw Testing Jonny Nilimaa, Jens Haggstrom, Niklas Bagge, Thomas Blanksvard, Gabriel 25 Sas, Ulf Ohlsson, Lars Bernspang, Bjorn Taljsten, Lennart Elfgren, Anders Carolin, Hakan Thun & Bjorn Paulsson Maintenance and Renewal of Concrete Rail Bridges - Results from EC Project MAINLINE 2 STRUCTURAL BEHAVIOUR AND DESIGN 29 Tarek Edrees Saaed, George Nikolakopoulos & Jan-Erik Jonasson 31 Semi-Active Structural Control Strategies Linn Grepstad Nes & Jan Arve 0verli 35 Structural Behaviour of Beams with Fibre Reinforced LWAC and Normal Density Concrete Mario Plos, Costin Pacoste & Morgan Johansson 39 Recommendations for Finite Element Analysis for Design of RC Slabs Havard Nedrelid & Terje Kanstad 43 Tests and Design of Fibre-Reinforced RC Beams with Dapped Ends Morten Engen, Max A.
    [Show full text]
  • Architectural Precast Concrete Joint Details
    ARCHITECTURAL PRECAST CONCRETE JOINT DETAILS Reported by PCI Committee on Architectural Precast Concrete Joint Details Raymond J. Schutz Chairman James Engleҟ Albert Litvin James G. Grossҟ R. L. Pare Abraham GutmanҟJohn S. Parrish J. A. Hansonҟ Irwin J. Speyer Kai Holbekҟ Ivan L. Varkay Felix Kulkaҟ Lloyd Wright Correct joint design and proper selection of materials and installation are vital for the successful performance and esthetic appeal of precast concrete wall systems. This report recommends the proper precast concrete joint details and sealants for specific situations. In writing these recommendations, architectural treatment and economy in mold design were considered but are not included, since these are covered in the PCI Manual on Architectural Precast Concrete. Following these recommendations will result in a good design and a durable, waterproof, and economical joint. 10 CONTENTS Chapter1—Joint design ................................... 12 1.1 Scope 1.2 Types of joints 1.3 General design concepts for joints 1.4 Number of joints 1.5 Location of joints Chapter 2—Planning check lists ............................ 14 2.1 Definitions 2.2 Joint planning 2.3 Water runoff planning Chapter3—Joint details ................................... 15 3.1 General 3.2 One-stage joints 3.3 Two-stage joints 3.4 Cavity wall 3.5 Floor and roof slab joints 3.6 Precast parapets 3.7 Precast panel window details Chapter 4—Sealant materials ............................... 24 4.1 General 4.2 Field-molded sealants and their uses 4.3 Accessory materials 4.4 Preformed sealants and their uses 4.5 Compression seals and their uses 4.6 Joint design 4.7 Determination of joint movements and locations 4.8 Selection of butt joint widths for field-molded sealants 4.9 Selection of butt joint shape for field-molded sealants 4.10 Selection of size of compression seals for butt joints 4.11 Limitations on butt joint widths and movements for various types of sealants 4.12 Lap joint sealant thickness References ..............................................
    [Show full text]
  • Effects of Half-Precast Concrete Slab System on Construction Productivity
    sustainability Article Effects of Half-Precast Concrete Slab System on Construction Productivity Kyuman Cho 1, Young-su Shin 2 and Taehoon Kim 1,* 1 School of Architecture, Chosun University, Gwangju 61452, Korea; [email protected] 2 Manager, Kunwon Engineering, Seoul 05855, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-230-7145 Received: 6 July 2017; Accepted: 17 July 2017; Published: 19 July 2017 Abstract: A half-precast concrete slab system (HPCSS) is reported to exhibit excellent structural performance when compared with traditional slab systems. However, there is a lack of extant research examining the construction issues of an HPCSS. Thus, in this study, we analyze the construction process and productivity of applying an HPCSS by using a simulation method with the data collected from an actual construction case. The results indicate that (i) the construction productivity of HPCSS is 1.7 times that of a traditional slab system, (ii) the cost per productivity unit of HPCSS exceeds that of a traditional slab system, and (iii) critical resources affecting the HPCSS productivity include form crew and rebar crew. The results of this study suggest that it is possible to develop an optimal construction plan of a construction site in which an HPCSS is installed, and that the HPCSS can be actively applied in the future. Keywords: half-precast concrete slab system; construction productivity; construction simulation 1. Introduction The construction industry is a highly labor-intensive industry facing several issues, including low productivity and construction quality. In order to overcome such problems, several researchers and practitioners have attempted to develop various methods to facilitate mechanical or manufactured procurements for a part of a facility, and this has subsequently led to the proliferation of automation technology in construction.
    [Show full text]