High Performance Motion Detection: Some Trends

Total Page:16

File Type:pdf, Size:1020Kb

High Performance Motion Detection: Some Trends High performance motion detection: some trends toward new embedded architectures for vision systems Lionel Lacassagne, Antoine Manzanera, Julien Denoulet, Alain Mérigot To cite this version: Lionel Lacassagne, Antoine Manzanera, Julien Denoulet, Alain Mérigot. High performance motion detection: some trends toward new embedded architectures for vision systems. Journal of Real- Time Image Processing, Springer Verlag, 2009, 4 (2), pp.127-146. 10.1007/s11554-008-0096-7. hal- 01131002 HAL Id: hal-01131002 https://hal.archives-ouvertes.fr/hal-01131002 Submitted on 12 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of RealTime Image Processing manuscript No. (will be inserted by the editor) Lionel Lacassagne · Antoine Manzanera · Julien Denoulet · Alain Merigot´ High Performance Motion Detection: Some trends toward new embedded architectures for vision systems Received: date / Revised: date Abstract The goal of this article is to compare some opti- Introduction mized implementations on current High Performance Plat- forms in order to highlight architectural trends in the field For more than thirty years, Moore’s law had ruled the perfor- of embedded architectures and to get an estimation of what mance and the development of computers: speed and clock should be the components of a next generation vision sys- frequency were the races to win. This trend slowly drifted tem. We present some implementations of robust motion de- as the processing power of computers reached a seemingly tection algorithms on three architectures: a general purpose stable value. Other constraints (static current consumption, RISC processor - the PowerPC G4 - a parallel artificial retina leakage, less MIPS per gates and less MIPS per Watts) of dedicated to low level image processing - Pvlsar34 - and the current technology - 90 nm and 65 nm - gave researchers Associative Mesh, a specialized architecture based on asso- an impulse to look for innovative directions to improve effi- ciative net. To handle the different aspects and constraints of ciency and performance of their architectures. Current chal- embedded systems, execution time and power consumption lenge is to tackle power consumption to increase systems of these architectures are compared. autonomy. Such technology, like IP core within embedded systems, make the processor frequency adaptable and lead to a finely optimized energy consumption. As image pro- cessing and computer vision are very CPU demanding, we focus on the impact of the architecture for a frequently used class of algorithms: the motion detection algorithms. Keywords Three architectural paradigms are compared: Embedded system, Vision-SoC, RISC, SIMD, SWAR, par- allel architecture, programmable artificial retina, associative – SWAR: SIMD Within A Register: the impact of the SIMD nets model, vision, image processing, motion detection, High multimedia extension inside RISC processors, to enhance Performance Computing. performance; – programmable artificial retina: one elementary processor Lionel Lacassagne per pixel for cellular massively parallel computation and Institut d’Electronique Fondamentale (IEF/AXIS) low power consumption; Universite´ Paris Sud – associative net: impact of reconfigurable graph/net be- E-mail: [email protected] tween processors for local and global computations and Antoine Manzanera also the impact of asynchronous processors on power Laboratoire d’Electronique et d’Informatique consumption. Ecole Nationale Superieure´ de Techniques avancees´ (ENSTA) E-mail: [email protected] We focus on the advantages and limitations of these ar- Julien Denoulet chitectures through a set of benchmarks. We also show how Laboratoire des Instruments et Systemes` d’Ile de France to modify the algorithms to take advantage each architec- (LISIF/SYEL) Universite´ Pierre et Marie Curie ture’s specificities. We provide different performance indexes E-mail: [email protected] like speed, energy required and a “down-clocking” frequency Alain Merigot´ to enforce real-time execution. Such indexes provide insight Institut d’Electronique Fondamentale (IEF/AXIS) on future trends in computer architecture for embedded sys- Universite´ Paris Sud tems. E-mail: [email protected] 2 The paper is organized as follow. The first section in- “frame difference” option is classical and fairly obvious: the troduces a set of motion detection algorithms: Frame Dif- temporal derivative is approximated by a difference between ference, Markovian relaxation, Sigma-Delta algorithm and consecutive frames, whose absolute value is used as a single post-processing morphological operators. The second sec- motion map (observation) Ot(x) = |It(x)−It−1(x)| and the tion presents the three architectures: the PowerPC G4, Pvl- initial value of the motion label Eˆt is obtained by threshold- sar34 (a 200 × 200 Programmable Artificial Retina) and the ing Ot. The “SigmaDelta” option – detailed in Section 1.1 – Associative Mesh (an asynchronous net with SIMD func- is a recent algorithm (29), based on non-linear estimation of tional units). This section also provides details about how temporal statistics of every pixel. algorithms are optimized in regard to the targeted architec- The spatiotemporal regularization part aims at exploiting tures. The third section deals with benchmarking: bench- the correlations between neighboring pixels in the motion mark of the different algorithms in term of speed and in term measures in order to improve the localization of the moving of power consumption. To conclude, a synthesis of two ex- objects. Two main options are considered here: (a) Morpho- tensive benchmarks is provided. logical filtering, detailed in Section 1.2 and (b) Markovian relaxation, detailed in Section 1.3. So, the “Sigma-Delta” can be seen as a pre-processing 1 Motion detection algorithms step for the Markovian regularization or as the main algo- rithm when followed by a morphological post-processing. As the number of places observed by cameras is constantly increasing, a natural trend is to eliminate the human interac- tion within the video monitoring systems and to design fully 1.1 Sigma-Delta Estimation automatic video surveillance devices. Although the relative importance of the low level image processing may vary from The principle of the Σ∆ algorithm is to estimate two pa- one system to the other, the computational weight of the rameters Mt and Vt of the temporal signal It within every low level operators is generally high, because they involve a pixel using Σ∆ modulations. It is composed of four steps: great amount of data. Thus, the ability of video surveillance (1) update the current background image Mt with a Σ∆ fil- systems to detect a relevant event (intrusion, riot, distress...) ter, (2) compute the frame difference between Mt and It, is strongly related to the performance of some crucial image (3) update the time-variance image Vt from the difference Ot ˆ processing functions. using a Σ∆ filter and (4) estimate the initial motion label Et Such fundamental processing step is the motion detec- by comparing the current difference Ot and time-variance tion, whose purpose is to partition the pixels of every frame Vt. of the image sequence into two classes: the background, cor- for each pixel x: responding to pixels belonging to the static scene (label: 0) if Mt(x) < It(x),Mt(x) = Mt−1(x) + 1 and the foreground, corresponding to pixels belonging to a if Mt(x) > It(x),Mt(x) = Mt−1(x) − 1 moving object (label: 1). A motion detection algorithm must otherwise Mt(x) = Mt−1(x) discriminate the moving objects from the background as ac- step1: update Mt curately as possible, without being too sensitive to the sizes for each pixel x: and velocities of the objects, or to the changing conditions of Ot(x) = |Mt(x) − It(x)| the static scene. For long autonomy and discretion purposes, step2: compute Ot the system must not consume too much computational re- sources (energy and circuit area). The motion detection is for each pixel x such that Ot(x) 6= 0: if Vt(x) < N × Ot(x),Vt(x) = Vt−1(x) + 1 usually the most computationally demanding function of a if Vt(x) > N × Ot(x),Vt(x) = Vt−1(x) − 1 video surveillance system. How the algorithm is actually otherwise Vt(x) = Vt−1(x) computed and on which architecture, then become crucial step3: update Vt questions. x Three algorithm/architecture pairs will be considered here. for each pixel : if Ot(x) < Vt(x) In order to compare those very different architectures, we then Eˆt = 0 will consider different versions of motion detection algo- else Eˆt = 1 rithms with similar quality but relying on different compu- step4: estimate Eˆ tational models, some of them being more adapted to one t architecture than the other. Apparently, the only parameter is the amplification fac- The motion detection algorithm can be separated into tor N of the difference (typical values of N are in 2 ... 4). two parts: (1) time-differentiation and (2) spatiotemporal reg- The dimension of N is the number of standard deviation ularization. used in the initialization of the motion label. In fact, the The purpose of the time-differentiation part is to pro- updating frequency, which has the dimension of number of vide, for every pixel x and every time index t: a measure gray level per second, can also be adapted. This is a way of of the temporal variation (the observation), denoted Ot and customizing the Σ∆ estimation to different kinds of motion an initial value of the motion binary label, denoted Eˆt. The and image noise (30). 3 ^ εB (I)(x) = I(x − b) γB = δB ◦ εB The final motion label Et then corresponds to the objects b∈B (connected components) bigger than Bn that appear on two _ δB (I)(x) = I(x + b) ϕB = εB ◦ δB consecutive frames.
Recommended publications
  • Elementary Functions: Towards Automatically Generated, Efficient
    Elementary functions : towards automatically generated, efficient, and vectorizable implementations Hugues De Lassus Saint-Genies To cite this version: Hugues De Lassus Saint-Genies. Elementary functions : towards automatically generated, efficient, and vectorizable implementations. Other [cs.OH]. Université de Perpignan, 2018. English. NNT : 2018PERP0010. tel-01841424 HAL Id: tel-01841424 https://tel.archives-ouvertes.fr/tel-01841424 Submitted on 17 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Perpignan Via Domitia Préparée au sein de l’école doctorale 305 – Énergie et Environnement Et de l’unité de recherche DALI – LIRMM – CNRS UMR 5506 Spécialité: Informatique Présentée par Hugues de Lassus Saint-Geniès [email protected] Elementary functions: towards automatically generated, efficient, and vectorizable implementations Version soumise aux rapporteurs. Jury composé de : M. Florent de Dinechin Pr. INSA Lyon Rapporteur Mme Fabienne Jézéquel MC, HDR UParis 2 Rapporteur M. Marc Daumas Pr. UPVD Examinateur M. Lionel Lacassagne Pr. UParis 6 Examinateur M. Daniel Menard Pr. INSA Rennes Examinateur M. Éric Petit Ph.D. Intel Examinateur M. David Defour MC, HDR UPVD Directeur M. Guillaume Revy MC UPVD Codirecteur À la mémoire de ma grand-mère Françoise Lapergue et de Jos Perrot, marin-pêcheur bigouden.
    [Show full text]
  • Run-Time Adaptation to Heterogeneous Processing Units for Real-Time Stereo Vision
    Run-time Adaptation to Heterogeneous Processing Units for Real-time Stereo Vision Benjamin Ranft Oliver Denninger FZI Research Center for Information Technology FZI Research Center for Information Technology Karlsruhe, Germany Karlsruhe, Germany [email protected] [email protected] Abstract—Todays systems from smartphones to workstations task are becoming increasingly parallel and heterogeneous: Pro- data cessing units not only consist of more and more identical element cores – furthermore, systems commonly contain either a discrete general-purpose GPU alongside with their CPU or even integrate both on a single chip. To benefit from this trend, software should utilize all available resources and adapt to varying configurations, including different CPU and GPU performance or competing processes. This paper investigates parallelization and adaptation strate- gies using dense stereo vision as an example application – a basis e. g. for advanced driver assistance systems, but also robotics or gesture recognition. At this, task-driven as well as data element- and data flow-driven parallelization approaches data are feasible. To achieve real-time performance, we first utilize flow data element-parallelism individually on each processing unit. Figure 1. Parallelization approaches offered by our application On this basis, we develop and implement further strategies for heterogeneous systems and automatic adaptation to the units (GPUs) often outperform multi-core CPUs with single hardware available at run-time. Each approach is described instruction, multiple data (SIMD) capabilities w. r. t. frame concerning i. a. the propagation of data to processors and its rates and energy efficiency [4], [5], although there are relation to established methods. An experimental evaluation with multiple test systems and usage scenarious reveals advan- exceptions [6].
    [Show full text]
  • A Compiler Target Model for Line Associative Registers
    University of Kentucky UKnowledge Theses and Dissertations--Electrical and Computer Engineering Electrical and Computer Engineering 2019 A Compiler Target Model for Line Associative Registers Paul S. Eberhart University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.141 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Eberhart, Paul S., "A Compiler Target Model for Line Associative Registers" (2019). Theses and Dissertations--Electrical and Computer Engineering. 138. https://uknowledge.uky.edu/ece_etds/138 This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Low Power Image Processing: Analog Versus Digital Comparison Jacques-Olivier Klein, Lionel Lacassagne, Herve Mathias, Sebastien Moutault, Antoine Dupret
    Low power image processing: analog versus digital comparison Jacques-Olivier Klein, Lionel Lacassagne, Herve Mathias, Sebastien Moutault, Antoine Dupret To cite this version: Jacques-Olivier Klein, Lionel Lacassagne, Herve Mathias, Sebastien Moutault, Antoine Dupret. Low power image processing: analog versus digital comparison. 2005, pp.111-115, 10.1109/CAMP.2005.33. hal-00015955 HAL Id: hal-00015955 https://hal.archives-ouvertes.fr/hal-00015955 Submitted on 15 Dec 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Low power Image Processing: Analog versus Digital comparison Jacques-Olivier Klein, Lionel Lacassagne, Herve´ Mathias, Sebastien´ Moutault and Antoine Dupret Institut d’Electronique Fondamentale Bat.ˆ 220, Univ. Paris-Sud, France Email: [email protected] Abstract— In this paper, a programmable analog retina is SENSORS ARAM MUX3 A/D-PROC I/O presented and compared with state of the art MPU for embedded Y - D Q imaging applications. The comparison is based on the energy D requirement to implement the same image processing task. E C D Q Results showed that analog processing requires lower power O consumption than digital processing. In addition, the execution D D Q E time is shorter since the size of the retina is reasonably large.
    [Show full text]
  • Low Overhead Memory Subsystem Design for a Multicore Parallel DSP Processor
    Linköping Studies in Science and Technology Dissertation No. 1532 Low Overhead Memory Subsystem Design for a Multicore Parallel DSP Processor Jian Wang Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Linköping 2014 ISBN 978-91-7519-556-8 ISSN 0345-7524 ii Low Overhead Memory Subsystem Design for a Multicore Parallel DSP Processor Jian Wang ISBN 978-91-7519-556-8 Copyright ⃝c Jian Wang, 2014 Linköping Studies in Science and Technology Dissertation No. 1532 ISSN 0345-7524 Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden Phone: +46 13 28 10 00 Author e-mail: [email protected] Cover image Combined Star and Ring onchip interconnection of the ePUMA multicore DSP. Parts of this thesis are reprinted with permission from the IEEE. Printed by UniTryck, Linköping University Linköping, Sweden, 2014 Abstract The physical scaling following Moore’s law is saturated while the re- quirement on computing keeps growing. The gain from improving sili- con technology is only the shrinking of the silicon area, and the speed- power scaling has almost stopped in the last two years. It calls for new parallel computing architectures and new parallel programming meth- ods. Traditional ASIC (Application Specific Integrated Circuits) hardware has been used for acceleration of Digital Signal Processing (DSP) subsys- tems on SoC (System-on-Chip). Embedded systems become more com- plicated, and more functions, more applications, and more features must be integrated in one ASIC chip to follow up the market requirements. At the same time, the product lifetime of a SoC with ASIC has been much reduced because of the dynamic market.
    [Show full text]
  • FULLTEXT01.Pdf
    Institutionen f¨or systemteknik Department of Electrical Engineering Examensarbete Master’s Thesis Implementation Aspects of Image Processing Per Nordl¨ow LITH-ISY-EX-3088 Mars 2001 Abstract This Master’s Thesis discusses the different trade-offs a programmer needs to consider when constructing image processing systems. First, an overview of the different alternatives available is given followed by a focus on systems based on general hardware. General, in this case, means mass-market with a low price- performance-ratio. The software environment is focused on UNIX, sometimes restricted to Linux, together with C, C++ and ANSI-standardized APIs. Contents 1Overview 4 2 Parallel Processing 6 2.1 Sequential, Parallel, Concurrent Execution ............. 6 2.2 Task and Data Parallelism ...................... 6 2.3 Architecture Independent APIs ................... 7 2.3.1 Parallel languages ...................... 7 2.3.2 Threads ............................ 8 2.3.3 Message Sending Interfaces . .............. 8 3 Computer Architectures 10 3.1Flynn’sTaxonomy.......................... 10 3.2MemoryHierarchies......................... 11 3.3 Data Locality ............................. 12 3.4 Instruction Locality ......................... 12 3.5SharedandDistributedMemory.................. 13 3.6Pipelining............................... 13 3.7ClusteredComputing......................... 14 3.8SWAR................................. 15 3.8.1 SWARC and Scc ....................... 15 3.8.2 SWAR in gcc ......................... 17 3.8.3 Trend ............................
    [Show full text]
  • Scalar Arithmetic Multiple Data: Customizable Precision for Deep Neural Networks
    Scalar Arithmetic Multiple Data: Customizable Precision for Deep Neural Networks Andrew Anderson∗, Michael J. Doyle∗, David Gregg∗ ∗School of Computer Science and Statistics Trinity College Dublin faanderso, mjdoyle, [email protected] Abstract—Quantization of weights and activations in Deep custom precision in software. Instead, we argue that the greatest Neural Networks (DNNs) is a powerful technique for network opportunities arise from defining entirely new operations that do compression, and has enjoyed significant attention and success. not necessarily correspond to existing SIMD vector instructions. However, much of the inference-time benefit of quantization is accessible only through customized hardware accelerators or with These new operations are not easy to find because they an FPGA implementation of quantized arithmetic. depend on novel insights into the sub-structure of existing Building on prior work, we show how to construct very fast machine instructions. Nonetheless, we provide an example of implementations of arbitrary bit-precise signed and unsigned one such operation: a custom bit-level precise operation which integer operations using a software technique which logically computes the 1D convolution of two input vectors, based on the embeds a vector architecture with custom bit-width lanes in fixed- width scalar arithmetic. At the strongest level of quantization, wide integer multiplier found in general-purpose processors. our approach yields a maximum speedup of s 6× on an x86 Mixed signed-unsigned integer arithmetic is a particular chal- platform, and s 10× on an ARM platform versus quantization lenge, and we present a novel solution. While the performance to native 8-bit integers. benefits are attractive, writing this kind of code by hand is difficult and error prone.
    [Show full text]
  • The Design of Scalar AES Instruction Set Extensions for RISC-V
    The design of scalar AES Instruction Set Extensions for RISC-V Ben Marshall1, G. Richard Newell2, Dan Page1, Markku-Juhani O. Saarinen3 and Claire Wolf4 1 Department of Computer Science, University of Bristol {ben.marshall,daniel.page}@bristol.ac.uk 2 Microchip Technology Inc., USA [email protected] 3 PQShield, UK [email protected] 4 Symbiotic EDA [email protected] Abstract. Secure, efficient execution of AES is an essential requirement on most computing platforms. Dedicated Instruction Set Extensions (ISEs) are often included for this purpose. RISC-V is a (relatively) new ISA that lacks such a standardised ISE. We survey the state-of-the-art industrial and academic ISEs for AES, implement and evaluate five different ISEs, one of which is novel. We recommend separate ISEs for 32 and 64-bit base architectures, with measured performance improvements for an AES-128 block encryption of 4× and 10× with a hardware cost of 1.1K and 8.2K gates respectivley, when compared to a software-only implementation based on use of T-tables. We also explore how the proposed standard bit-manipulation extension to RISC-V can be harnessed for efficient implementation of AES-GCM. Our work supports the ongoing RISC-V cryptography extension standardisation process. Keywords: ISE, AES, RISC-V 1 Introduction Implementing the Advanced Encryption Standard (AES). Compared to more general workloads, cryptographic algorithms like AES present a significant implementation chal- lenge. They involve computationally intensive and specialised functionality, are used in a wide range of contexts, and form a central target in a complex attack surface. The demand for efficiency (however measured) is an example of this challenge in two ways.
    [Show full text]
  • An Instruction Set Extension to Support Software-Based Masking
    An Instruction Set Extension to Support Software-Based Masking Si Gao1, Johann Großschädl2, Ben Marshall3,6, Dan Page3, Thinh Pham3 and Francesco Regazzoni4,5 1 Alpen-Adria Universität Klagenfurt. [email protected] 2 Department of Computer Science, University of Luxembourg. [email protected] 3 Department of Computer Science, University of Bristol. {ben.marshall,daniel.page,th.pham}@bristol.ac.uk 4 University of Amsterdam, [email protected] 5 Università della Svizzera italiana, [email protected] 6 PQShield Ltd, Oxford, UK. [email protected] Abstract. In both hardware and software, masking can represent an effective means of hardening an implementation against side-channel attack vectors such as Differential Power Analysis (DPA). Focusing on software, however, the use of masking can present various challenges: specifically, it often 1) requires significant effort to translate any theoretical security properties into practice, and, even then, 2) imposes a significant overhead in terms of efficiency. To address both challenges, this paper explores the use of an Instruction Set Extension (ISE) to support masking in software-based implementations of a range of (symmetric) cryptographic kernels including AES: we design, implement, and evaluate such an ISE, using RISC-V as the base ISA. Our ISE-supported first-order masked implementation of AES, for example, is an order of magnitude more efficient than a software-only alternative with respect to both execution latency and memory footprint; this renders it comparable to an unmasked implementation using the same metrics, but also first-order secure. Keywords: side-channel attack, masking, RISC-V, ISE 1 Introduction The threat of implementation attacks.
    [Show full text]
  • ESA IP Core Extensions for LEON2FT
    ESA IP core extensions for LEON2FT A new FPU with configurable (half/full/double) precision SWAR (SIMD Within A Register) instruction extensions TEC-ED & TEC-SW Final Presentation Days 2020-05-13 ESA UNCLASSIFIED - For Official Use ESA IP core extensions for LEON2FT • Budget: 156363 EUR (GSTP) + CCN 10000 EUR • Duration: 2.5 years including CCN • Prime: daiteq s.r.o., Prague, Czech Republic (CZ) • Extensions will be available with the LEON2-FT ESA IP core • Main Objectives: 1. Develop a new versatile FPU for LEON2-FT; 2. Specify and implement custom instructions for LEON2-FT; ● SWAR: Multiple simultaneous operations of reduced bit-width ● Apply new instructions on a GNSS SW receiver tracking loop 3. CCN work: Port LEON2-FT and extensions to BRAVE-Medium • Future work: evaluation of and extensions for the NOEL-V RISC-V IP core ESA UNCLASSIFIED - For Official Use TEC-ED & TEC-SW FP Days | 2020-05-13 | Slide 2 ESA IP Core Extensions for LEON2: daiFPU and SWAR ESA contract 4000122242/17/NL/LF Presenter Martin Daněk daiteq s.r.o. TEC-ED & TEC-SW Final Presentation Days May 13, 2020 www.daiteq.com Company overview Based in Prague, the Czech Republic Founded in 2013 Focus on Embedded systems, HW and low-level SW design FPGA acceleration for image processing and AI Processor architecture Floating-point processing Customized configurable datapaths Dataflow processing, microthreading Independent technical reviews Background: 15+ years of experience in digital design, FPGA technology, processor architecture, algorithm design, control. 13.5.2020 Copyright (c) 2020 daiteq s.r.o. TEC-ED&TEC-SW FPD 2 www.daiteq.com Agenda Overview of the activity Application domain: GNSS Performance evaluation: tracking loop LEON2FT extensions: daiFPU, SWAR = SIMD-within-a-register Resource requirements: daiFPU, SWAR Performance evaluation: Whetstone Software support: binutils, llvm, SoftFloat Experience/Summary 13.5.2020 Copyright (c) 2020 daiteq s.r.o.
    [Show full text]
  • Software Component Template V4.2.0 R4.0 Rev 3
    Software Component Template V4.2.0 R4.0 Rev 3 Document Title Software Component Template Document Owner AUTOSAR Document Responsibility AUTOSAR Document Identification No 062 Document Classification Standard Document Version 4.2.0 Document Status Final Part of Release 4.0 Revision 3 Document Change History Date Version Changed by Description • Added CompuMethod categories SCALE_LINEAR_AND_ TEXTTABLE and SCALE_ RATIONAL_AND_TEXTTABLE (table 5.67) • Clarification concerning the usage of invalid values • Revised support for data filters • Support for partial networking • Support for the specification of AUTOSAR 2011-10-26 4.2.0 local connections between Administration software-components • Improved description of service needs • Change history of constraints and specification items • Miscellaneous improvements and clarifications • “Support for Standardization” moved to Standardization Template [1] 1 of 566 Document ID 062: AUTOSAR_TPS_SoftwareComponentTemplate — AUTOSAR CONFIDENTIAL — Software Component Template V4.2.0 R4.0 Rev 3 • Remove restriction on data type of inter-runnable variables • Rework end-to-end AUTOSAR 2010-10-14 4.1.0 communication protection Administration • Add more constraints on the usage of the meta-model • Various fixes and clarifications • New requirements tracing table • Support for fixed data exchange • Implementation of meta-model cleanup • Fundamental revision of the data type concept • Support for variant handling • Support for end-to-end communication protection • Support for documentation AUTOSAR • Support for stopping
    [Show full text]
  • Perception-Motivated Parallel Algorithms for Haptics
    Stefano Galvan Perception-motivated parallel algorithms for haptics Ph.D. Thesis June 29, 2010 Universit`adegli Studi di Verona Dipartimento di Informatica Advisor: prof. Paolo Fiorini Series N◦: TD-03-10 Universit`adi Verona Dipartimento di Informatica Strada le Grazie 15, 37134 Verona Italy Summary In the last years the use of haptic feedback has been used in several applications, from mobile phones to rehabilitation, from video games to robotic aided surgery. The haptic devices, that are the interfaces that create the stimulation and re- produce the physical interaction with virtual or remote environments, have been studied, analyzed and developed in many ways. Every innovation in the mechanics, electronics and technical design of the device it is valuable, however it is important to maintain the focus of the haptic interaction on the human being, who is the only user of force feedback. In this thesis we worked on two main topics that are relevant to this aim: a perception based force signal manipulation and the use of modern multicore architectures for the implementation of the haptic controller. With the help of a specific experimental setup and using a 6 dof haptic device we designed a psychophysical experiment aimed at identifying of the force/torque differential thresholds applied to the hand-arm system. On the basis of the results obtained we determined a set of task dependent scaling functions, one for each degree of freedom of the three-dimensional space, that can be used to enhance the human abilities in discriminating different stimuli. The perception based manipulation of the force feedback requires a fast, sta- ble and configurable controller of the haptic interface.
    [Show full text]