September GEM Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

September GEM Newsletter March 2015 GEM Volume 3, Issue GEM God Everyone Me GEM is the official publication of the St. Charles Borromeo Council of the Knights of Columbus. It is published monthly by Knights of Columbus Council #3960, Randallstown, MD 21133, with an average circulation of approximately 160. Inquiries should be directed to the Editor. Grand Knight’s Message INSIDE THIS ISSUE Grand Knight’s Message 1 Chaplin’s Message 1 Brother Knights, Activities 2 Birthdays 3 I hope everyone is surviving the relentless District Deputy[s Report 4 Good of the Order 5 winter of 2014-15. Growing up in Lottery Winners 6 Pennsylvania, I remember many cold, snowy Feature 7 winters, but none like this past month Bingo Schedules 9 (maybe I am getting old). As we continue our Lenten journey, I would like to offer the words of Saint John Paul II in his Lenten intellectually. Do our actions really indicate message of 2003, “It is my fervent hope belief in the gospel, in God and His son, that believers will find this Lent a favorable Jesus Christ? Do our external penances time for bearing witness to the Gospel of really reflect true belief, or, are they like charity in every place, since the vocation to some of the sacrifices of the Old Testament charity is the heart of all true in which the people often “honored God evangelization.” Following his words, pick a with their lips but their heart was far from charity to either make a monetary donation, Him,” as the Prophet Isaiah s complained. or give of yourself, which would be more meaningful. Let us make this our path to Pope Benedict XVI pointed out follow to make Lent 2015 the most blessed particular kinds of disbelief prevalent in our we have experienced. time. “A particularly dangerous phenomenon for faith has arisen in our Vivat Jesu!!! times: indeed a form of atheism exists which we define as ‘practical’, in which the Joe Ignatius truth of faith or religious rites are not denied but are merely deemed irrelevant to daily life, detached from life, pointless. So it is/ that people often believe in God in a Chaplin’s Message superficial manner, and live ‘as though God “Repent and believe in the gospel.” This did not exist’.” (Columbia, July 2014, p.4). was Our Lord’s message in the gospel of the first Sunday of lent. As lent begins, we Archbishop Lori gives us some discuss ant number of penances to practice concreter examples of practical; atheism: in lent, as a sign of our repentance. But “Our own Catholic athletic leagues how about Our Lord’s words, ”believe in the sometimes schedule practices or games on gospel”? We certainly think we believe in Sunday mornings, and Catholic families, the gospel because we believe in it when faced with choosing between sports commitments and Mass, often choose Continued on page 2 column 2 Page | 2 GEM 33 Continued from page 1 column 2 Deacons the former. More than a few times, parents The Sacrament of Holy Orders marks (deacons) have complained that the sacrament of with an imprint (‘character’) which cannot be Confirmation, which we receive only once in removed and which configures them to Christ, our lives, interfered with their child’s soccer who made himself the ‘deacon’ or servant of game. Nearly every pastor and director of all.”(Catechism of the Catholic Church #1570) religious education bemoans the fact that Ever since Vatican II re-instituted the many parents drop off their children at diaconate, the Archdiocese of Baltimore has religious education classes/ but never bring been blessed by the dedication and selfless them to church on Sunday” (loc.cit.). service of its growing “college” of Permanent Deacons. These men, after prayerfully Pope Francis has said that “whenever answering the call, careful formation, and our interior life becomes caught up in our receiving the Sacrament of Holy Orders, do own interests and concerns, there is no faithfully and joyfully serve the needs of our longer room for others, no place for the community through a three-fold Ministry of the poor. God’s voice is no longer heard, the Word, Liturgy, and Charity. The charism of the deacon is found in these words from their quiet joy of his love is no longer felt ordination rite, as they are given the Book of (Op.cit.,p.5). Gospels: Lent is the appropriate time to "Believe what you read. Teach what you correct whatever tendencies we have to believe. Practice what you teach.” become practical atheists/ and a time to Whether you are a deacon or you are return to a true belief in the gospel in both interested in finding out more about the mind and heart diaconate, we hope you will visit these pages often. We welcome comments, suggestions, Monsignor Collins, and questions. If you wish to learn more about Chaplin the diaconal requirements and formation, please contact the Office of Clergy Personnel or call 410-547-5550. ROSARY DEVOTION WHERE: Old Holy Family Chapel at Liberty and Holbrook Roads th WHEN: 4 Tuesday every month at 7:00 PM The monthly Rosary Devotion, sponsored by the Knights of Columbus, but open to all who wish to attend, will take place at the old Holy Family Chapel. We will recite all four sets of mysteries -- Luminous, Joyful, Sorrowful, and Glorious. Come for all or part of the prayer time. We begin promptly at 7 p.m. and usually are done by 8:10 p.m. It is OK to come and leave as it fits your schedule for the evening. Fraternally yours in our Lord, Joe Ignatius, Grand Knight GEM Page | 3 33 BIRTHDAYS Celebrating the Culture of Life February Birthdays st Supreme Knight Carl Anderson was among the 1 Thomas Jordan presenters at the OneLife LA celebration on 5th Peter DiLeonardi th January 17, that invited all people to join in 6 Ray Butler declaring a commitment to valuing and th 10 Sam Capriolo protecting all human life, particularly the most th 15 Thomas Argondizza vulnerable. 21st John Driscoll nd 22 Oscar Valez The event began with a walk up Temple Street, nd 22 Lawrence Koch across Grand Avenue and down 1st Street. The rd 23 Cletus Agha walk was lead by Archbishop José Gomez, 23rd Joseph Shepp Supreme Knight Anderson, his wife Dorian, Mother Agnes Mary Donovan from the Sisters of Life, and California State Deputy Avelino Doliente. The event culminated in a family- March Birthdays friendly picnic with music, entertainment, food 1st Thomas Jordan trucks, and exhibits from community 5th Peter DiLeonardi organizations. 6th Ray Butler 10th Sam Capriolo “My brother Knights and I are pleased to be here 15th Thomas Argondizza for OneLife — celebrating with you the dignity of 21st John Driscoll every human being at every stage of life. We 22nd Oscar Valez know that every human being should be loved, 22nd Lawrence Koch respected and aided. This is true of the cold 23rd Cletus Agha child in need of a coat, the hungry family in need of food, the poor in need of education, and 23rd Joseph Shepp the child in utero waiting to be born,” Supreme Knight Anderson said in his introduction of Rick Smith, better known as “Noah’s Dad.” Smith is director of Digital Ministries at Watermark April Birthdays Community Church in Texas. He and his wife th 5 Raymond S. Watson Abbie were blessed with a son, Noah, two years th 5 Ron Derencz ago who was born with Down Syndrome. Smith 9th Thomas A. Keller immediately began a blog and social media 11th Cullis F. Glenn Jr. presence to share with the world how great his 12th Gregory W. Sliviak life has become since Noah’s birth. They have 15th Francis L. Saltysiak since been blessed with the birth of second son 15th John Strauch Jaxten. 16th Stephen R. Roscher Jr. 22nd David T. Coyle Sr. Supreme Knight Anderson also joined Jeff 24th Tom Feulner, Jr. Suppan in presenting the Smith family with 28th James McNamara signed baseballs and hats. Suppan began his MLB 29th Louis M. Dargenio career with the Boston Red Sox. He helped lead 30th Carroll M. Brown, Jr. the St Louis Cardinals to the 2004 World Series. Jeff Suppan announced his retirement as a HAPPY BIRTHDAY MARCH BABIES!! player on January 2, 2014, his 39th birthday. The announcement was timed for 2 PM, to honor his mother, Kathleen Suppan, who died six years earlier on the same day and at the same time. Page | 4 GEM 33 District Deputy’s Report We have already reached the midway point of the Columbian Year and I have already gained a lot being District Deputy over the first six months. I have gained over five pounds from all the delicious foods I have eaten during the holiday parties and after meeting meals at the five Councils. My wife wants me to begin wearing a sign that says “Do Not Feed the District Deputy”. I have also gained a lot of new friends in A Knights of Columbus council can work my visits to all the Councils across the District. I wonders; in fact, with its many programs, it encourage you to meet these fine men as well can help change the community, town, city by coming to your Council meetings and or neighborhood in which you live. However, activities if you have been away for a while. a successful Knights of Columbus program You can also visit any Council worldwide by just depends on people taking the initial idea, showing your membership card. Why not stop by modifying it to suit specific situations and one of the other Councils in the District to share local needs, then implementing the program some fellowship with nearby Brothers? in the way it works.
Recommended publications
  • JPL to Map the Moon on India Mission
    I n s i d e May 19, 2006 Volume 36 Number 10 News Briefs ............... 2 Griffin Visits Lab ............ 3 Special Events Calendar ...... 2 Passings, Letters ........... 4 Spitzer Sees Comet Breakup... 2 Retirees, Classifieds ......... 4 Jet Propulsion Laborator y A JPL state-of-the-art imaging spectrometer that will provide the first high-resolution spectral map of the JPL to entire lunar surface successfully completed its critical design review this week. The Moon Mineralogy Mapper, also known as “M3,” is one of two in- materials across the surface at high spatial resolution. This data map the struments that NASA is contributing to India’s first mission to the moon, will provide a much-needed long-term baseline for future exploration scheduled to launch in late 2007 or early 2008. By mapping the mineral activities. composition of the lunar surface, the mission will both provide clues to The mission’s observations will address several important scientific moon the early development of the solar system and guide future astronauts to issues, including early evolution of the solar system; fundamental stores of precious resources. processes acting on planets that shape their character; assessment of on India Chandrayaan-1 is India’s first deep-space mission as well as its first potential impact hazards to Earth; and assessment of space resources. lunar mission. “The entire M3 team feels honored to be able to partici- From its vantage point in orbit around the moon, the spacecraft will mission pate,” said Project Manager Tom Glavich of JPL. measure the sunlight reflected by all of the rocks and soil over which The instrument is well on its way to being delivered to the Chandray- it passes.
    [Show full text]
  • GRAIL Reveals Secrets of the Lunar Interior
    GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Strategies for Detecting Biological Molecules on Titan
    ASTROBIOLOGY Volume 18, Number 5, 2018 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1758 Strategies for Detecting Biological Molecules on Titan Catherine D. Neish,1 Ralph D. Lorenz,2 Elizabeth P. Turtle,2 Jason W. Barnes,3 Melissa G. Trainer,4 Bryan Stiles,5 Randolph Kirk,6 Charles A. Hibbitts,2 and Michael J. Malaska5 Abstract Saturn’s moon Titan has all the ingredients needed to produce ‘‘life as we know it.’’ When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth.
    [Show full text]
  • Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
    Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.
    [Show full text]
  • 304 Index Index Index
    _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R.
    [Show full text]
  • 2 / Lunar Base Concepts
    2 / LUNAR BASE CONCEPTS HE TERM "LUNAR BASE" can refer to a spectrum of concepts ranging from a mannable "line shack" to a multifunctional, self-sufficient, populous Tcolony. In general, the authors contributing to this book discuss the earliest stages of a permanently manned facility with the capability for scientific investigations and some ability to support its own operation with local materials. The exact form of the "final" configuration usually is not critical to the discussion until cost is included. Costs of a lunar base can be similar to the space station program or can be at the level of the Apollo project. Since cost is such a sensitive topic in the advocacy phase, it becomes very important to understand not only the total cost but also the spending rate and the basic assumptions about what is charged to the project. The costs derived by Hoffman and Niehoff in their study presented in this section differ from costs referenced by Sellers and Keaton in a later section. The final configurations in the two studies differ considerably, but in both cases the spending rates over the duration of the project are well within the rate of expenditure of the current space program and are substantially less than rates associated with Project Apollo. Because lower cost is a major strategy goal, design concepts generally adopt hardware from prior programs. For example, the studies conducted by NASA in the 1960's and described by Lowrnan and by Johnson and Leonard depict habitats inspired by the Apollo transportation system. Contemporary drawings show space station modules emplaced on the lunar surface.
    [Show full text]
  • Characterization of Previously Unidentified Lunar Pyroclastic Deposits Using Lunar Reconnaissance Orbiter Camera Data J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E00H25, doi:10.1029/2011JE003893, 2012 Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data J. Olaf Gustafson,1 J. F. Bell III,2,3 L. R. Gaddis,4 B. R. Hawke,5 and T. A. Giguere5,6 Received 1 July 2011; revised 31 March 2012; accepted 14 April 2012; published 8 June 2012. [1] We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to 100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits. Citation: Gustafson, J. O., J. F. Bell III, L. R. Gaddis, B.
    [Show full text]
  • The Space Race Documented Through Front Pages of Newspapers from Around North America
    The News Frontier The Space Race documented through front pages of newspapers from around North America Newspapers and patches generously donated to the McAuliffe-Shepard Discovery Center by Jerrid Kenney After the end of World War II, a new battle began: the Cold War. In the mid-20th century, the United States and the Soviet Union were each trying to prove they were better than the other. Both sides wanted to show the superiority of their technology, military, and, by extension, their political systems. Starting in the late 1950s, the battlefront reached space. The United States and the Soviet Union fought to first achieve milestones in space exploration—starting in 1957 with the Soviet Union’s launch of Sputnik I, continuing through the U.S.’s landing astronauts on the Moon in 1969, and ending with a handshake in space between American astronauts and Soviet cosmonauts in 1975. Witness the fight for extraterrestrial might by reading about the United States and the Soviet Union’s major feats of the Space Race, as recorded in American and Canadian newspapers in real time. The Space Race Over Time July 15-24, 1975 February 20, 1962 May 28, 1964 The Space Race comes October 4, 1957 April 12, 1961 July 20, 1969 John Glenn becomes NASA launches to an end with the Soviet Union Yuri Gagarin Neil Armstrong first American to unmanned Saturn I Apollo-Soyuz Test launches first becomes first becomes the first orbit the Earth rocket as first step Project, the in-orbit artificial satellite human in space human to walk on of the Apollo the Moon docking of U.S.
    [Show full text]
  • REFERENCES LUNAR SAMPLE COMPENDIUM (July 2012)
    REFERENCES LUNAR SAMPLE COMPENDIUM (July 2012) Note: The abstract volumes of the annual Lunar Science and Lunar and Planetary Science Conferences were issued by the Lunar and Planetary Science Institute, Houston.. Initially, the Proceedings of these annual conferences were supplements to Geochim. Cosmochim. Acta (volumes 1-12), later J. Geophys. Res.(volumes 13-17). Proceedings 18-22 were produced and published by the Lunar Planetary Science Institute. There is an index to the first nine Lunar Science Conferences (Masterson 1979). Proceedings papers were peer-reviewed, while abstracts were not. Abell P.I., Cadogen P.H., Eglington G., Maxwell J.R. and Pillinger C.T. (1971) Survey of lunar carbon compounds. Proc. Second Lunar Sci. Conf. 1843-1863. Abu-Eid R.M., Vaughan D.J., Whitner M., Burns R.G. and Morawski A. (1973) Spectral data bearing on the oxidation states of Fe, Ti, and Cr in Apollo 15 and Apollo 16 samples (abs). Lunar Sci. IV, 1-3. Lunar Planetary Institute, Houston. Adams J.B. and McCord T.B. (1970) Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf. 1937-1946. Adams J.B. and McCord T.B. (1971) Optical properties of mineral separates, glass and anorthosite fragments from Apollo mare samples. Proc. Second Lunar Sci. Conf. 2183-2195. Adams J.B. and McCord T.B. (1972) Optical evidence for average pyroxene composition of Apollo 15 samples. In The Apollo 15 Lunar Samples, 10-13. Lunar Planetary Institute, Houston. Adams J.B. and McCord T.B.
    [Show full text]
  • Lunar Sourcebook : a User's Guide to the Moon
    REFERENCES Adams J. B. (1974) Visible and near-infrared diffuse chemistry, mineralogy and petrology of some Apollo 11 reflectance spectra of pyroxenes as applied to remote lunar samples. Proc. Apollo 11 Lunar Sci. Conf., pp. 93–128. sensing of solid objects in the solar system. J. Geophys. Ahrens T. J. and Cole D. M. (1974) Shock compression and Res., 79, 4829–4836. adiabatic release of lunar fines from Apollo 17. Proc. Lunar Adams J. B. (1975) Interpretation of visible and near-infrared Sci. Conf. 5th, pp. 2333–2345. diffuse reflectance spectra of pyroxenes and other rock Ahrens T. J. and O’Keefe J. D. (1977) Equations of state and forming minerals. In Infrared and Raman Spectroscopy of impact-induced shock-wave interaction on the Moon. In Lunar and Terrestrial Materials (C. Karr, ed.), pp. 91–116. Impact and Explosion Cratering (D. J. Roddy, R. O. Pepin, Academic, New York. and R. B. Merrill, eds.), pp. 639–656. Pergamon, New York. Adams J. B. and McCord T. B. (1973) Vitrification darkening Albee A. L. and Chodos A. A. (1970) Microprobe investigations in the lunar highlands and identification of Descartes on Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf., pp. material at the Apollo 16 site. Proc. Lunar Sci. Conf. 4th, 135–157. pp. 163–177. Albee A. L., Chodos A. A., Gancarz A. J., Haines E. L., Adams J. B., Pieters C., and McCord T. B. (1974) Orange Papanastassiou D. A., Ray L., Tera F., Wasserburg G. J., glass: Evidence for regional deposits of pyroclastic origin and Wen T. (1972) Mineralogy, petrology, and chemistry of on the Moon.
    [Show full text]
  • ISPRS Abstract Book.Pdf
    ISPRS Working Group IV/7 Extraterrestrial Mapping Advances in Planetary Mapping 2007 Lunar and Planetary Institute, Houston, Tx, March 17, 2007 08:30 Registration 09:00 Welcome / Logistics Oral Presentations Moon Chair persons: J. Oberst and J. Haruyama 09:05 – 09:20 Report on the final completion of the unified Lunar control network 2005 and Lunar topographic model B.A. Archinal, M.R. Rosiek, R.L. Kirk, T.L. Hare, and B.L. Reddin 09:20 – 09:35 Global mapping of the Moon with the Lunar Imager/Spectrometer on SELENE J. Haruyama, M. Ohtake, T. Matunaga, T. Morota, C. Honda, M. Torii, Y. Yokota, H. Kawasaki, and LISM working group 09:35 – 09:50 Lunar orbiter laser altimeter on Lunar Reconnaissance Orbiter G. A. Neumann, D. E. Smith, and M. T. Zuber 09:50 – 10:05 LROC – Lunar Reconnaissance Orbiter Camera M.S. Robinson, E.M. Eliason, H.Hiesinger, B.L. Jolliff, A.S. McEwen, M.C. Malin, M.A. Ravine, D. Roberts, P.C. Thomas, and E.P. Turtle Coffee and Poster Viewing Methods in Planetary Mapping Chair persons: J. Haruyama and J. Oberst 10:35 – 10:50 Toward machine geomorphic mapping of planetary surfaces T.F. Stepinski 10:50 – 11:05 MR PRISM - an Image analysis tool and GIS for CRISM A.J. Brown, J. L. Bishop, and M.C. Storrie-Lombardi 11:05 – 11:20 Description of the JPL planetary web mapping server L. Plesea, T.M. Hare, E. Dobinson, and D. Curkendall 11:20 – 11:35 Do we really need to put stereo cameras on landers? A.C.
    [Show full text]