CS302 Final Exam, December 5, 2016 - James S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applications of DFS
(b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges 1 / 7 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 1 / 7 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 1 / 7 4. Connected components of a undirected graph (see Homework 6) 5. -
Overview Parallel Merge Sort
CME 323: Distributed Algorithms and Optimization, Spring 2015 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Matriod and Stanford. Lecture 4, 4/6/2016. Scribed by Henry Neeb, Christopher Kurrus, Andreas Santucci. Overview Today we will continue covering divide and conquer algorithms. We will generalize divide and conquer algorithms and write down a general recipe for it. What's nice about these algorithms is that they are timeless; regardless of whether Spark or any other distributed platform ends up winning out in the next decade, these algorithms always provide a theoretical foundation for which we can build on. It's well worth our understanding. • Parallel merge sort • General recipe for divide and conquer algorithms • Parallel selection • Parallel quick sort (introduction only) Parallel selection involves scanning an array for the kth largest element in linear time. We then take the core idea used in that algorithm and apply it to quick-sort. Parallel Merge Sort Recall the merge sort from the prior lecture. This algorithm sorts a list recursively by dividing the list into smaller pieces, sorting the smaller pieces during reassembly of the list. The algorithm is as follows: Algorithm 1: MergeSort(A) Input : Array A of length n Output: Sorted A 1 if n is 1 then 2 return A 3 end 4 else n 5 L mergeSort(A[0, ..., 2 )) n 6 R mergeSort(A[ 2 , ..., n]) 7 return Merge(L, R) 8 end 1 Last lecture, we described one way where we can take our traditional merge operation and translate it into a parallelMerge routine with work O(n log n) and depth O(log n). -
Lecture 16: Lower Bounds for Sorting
Lecture Notes CMSC 251 To bound this, recall the integration formula for bounding summations (which we paraphrase here). For any monotonically increasing function f(x) Z Xb−1 b f(i) ≤ f(x)dx: i=a a The function f(x)=xln x is monotonically increasing, and so we have Z n S(n) ≤ x ln xdx: 2 If you are a calculus macho man, then you can integrate this by parts, and if you are a calculus wimp (like me) then you can look it up in a book of integrals Z n 2 2 n 2 2 2 2 x x n n n n x ln xdx = ln x − = ln n − − (2 ln 2 − 1) ≤ ln n − : 2 2 4 x=2 2 4 2 4 This completes the summation bound, and hence the entire proof. Summary: So even though the worst-case running time of QuickSort is Θ(n2), the average-case running time is Θ(n log n). Although we did not show it, it turns out that this doesn’t just happen much of the time. For large values of n, the running time is Θ(n log n) with high probability. In order to get Θ(n2) time the algorithm must make poor choices for the pivot at virtually every step. Poor choices are rare, and so continuously making poor choices are very rare. You might ask, could we make QuickSort deterministic Θ(n log n) by calling the selection algorithm to use the median as the pivot. The answer is that this would work, but the resulting algorithm would be so slow practically that no one would ever use it. -
Advanced Topics in Sorting
Advanced Topics in Sorting complexity system sorts duplicate keys comparators 1 complexity system sorts duplicate keys comparators 2 Complexity of sorting Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X. Machine model. Focus on fundamental operations. Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X. lower bound ~ upper bound Example: sorting. • Machine model = # comparisons access information only through compares • Upper bound = N lg N from mergesort. • Lower bound ? 3 Decision Tree a < b yes no code between comparisons (e.g., sequence of exchanges) b < c a < c yes no yes no a b c b a c a < c b < c yes no yes no a c b c a b b c a c b a 4 Comparison-based lower bound for sorting Theorem. Any comparison based sorting algorithm must use more than N lg N - 1.44 N comparisons in the worst-case. Pf. Assume input consists of N distinct values a through a . • 1 N • Worst case dictated by tree height h. N ! different orderings. • • (At least) one leaf corresponds to each ordering. Binary tree with N ! leaves cannot have height less than lg (N!) • h lg N! lg (N / e) N Stirling's formula = N lg N - N lg e N lg N - 1.44 N 5 Complexity of sorting Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. -
9 the Graph Data Model
CHAPTER 9 ✦ ✦ ✦ ✦ The Graph Data Model A graph is, in a sense, nothing more than a binary relation. However, it has a powerful visualization as a set of points (called nodes) connected by lines (called edges) or by arrows (called arcs). In this regard, the graph is a generalization of the tree data model that we studied in Chapter 5. Like trees, graphs come in several forms: directed/undirected, and labeled/unlabeled. Also like trees, graphs are useful in a wide spectrum of problems such as com- puting distances, finding circularities in relationships, and determining connectiv- ities. We have already seen graphs used to represent the structure of programs in Chapter 2. Graphs were used in Chapter 7 to represent binary relations and to illustrate certain properties of relations, like commutativity. We shall see graphs used to represent automata in Chapter 10 and to represent electronic circuits in Chapter 13. Several other important applications of graphs are discussed in this chapter. ✦ ✦ ✦ ✦ 9.1 What This Chapter Is About The main topics of this chapter are ✦ The definitions concerning directed and undirected graphs (Sections 9.2 and 9.10). ✦ The two principal data structures for representing graphs: adjacency lists and adjacency matrices (Section 9.3). ✦ An algorithm and data structure for finding the connected components of an undirected graph (Section 9.4). ✦ A technique for finding minimal spanning trees (Section 9.5). ✦ A useful technique for exploring graphs, called “depth-first search” (Section 9.6). 451 452 THE GRAPH DATA MODEL ✦ Applications of depth-first search to test whether a directed graph has a cycle, to find a topological order for acyclic graphs, and to determine whether there is a path from one node to another (Section 9.7). -
Optimal Node Selection Algorithm for Parallel Access in Overlay Networks
1 Optimal Node Selection Algorithm for Parallel Access in Overlay Networks Seung Chul Han and Ye Xia Computer and Information Science and Engineering Department University of Florida 301 CSE Building, PO Box 116120 Gainesville, FL 32611-6120 Email: {schan, yx1}@cise.ufl.edu Abstract In this paper, we investigate the issue of node selection for parallel access in overlay networks, which is a fundamental problem in nearly all recent content distribution systems, grid computing or other peer-to-peer applications. To achieve high performance and resilience to failures, a client can make connections with multiple servers simultaneously and receive different portions of the data from the servers in parallel. However, selecting the best set of servers from the set of all candidate nodes is not a straightforward task, and the obtained performance can vary dramatically depending on the selection result. In this paper, we present a node selection scheme in a hypercube-like overlay network that generates the optimal server set with respect to the worst-case link stress (WLS) criterion. The algorithm allows scaling to very large system because it is very efficient and does not require network measurement or collection of topology or routing information. It has performance advantages in a number of areas, particularly against the random selection scheme. First, it minimizes the level of congestion at the bottleneck link. This is equivalent to maximizing the achievable throughput. Second, it consumes less network resources in terms of the total number of links used and the total bandwidth usage. Third, it leads to low average round-trip time to selected servers, hence, allowing nearby nodes to exchange more data, an objective sought by many content distribution systems. -
A Low Complexity Topological Sorting Algorithm for Directed Acyclic Graph
International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014 A Low Complexity Topological Sorting Algorithm for Directed Acyclic Graph Renkun Liu then return error (graph has at Abstract—In a Directed Acyclic Graph (DAG), vertex A and least one cycle) vertex B are connected by a directed edge AB which shows that else return L (a topologically A comes before B in the ordering. In this way, we can find a sorted order) sorting algorithm totally different from Kahn or DFS algorithms, the directed edge already tells us the order of the Because we need to check every vertex and every edge for nodes, so that it can simply be sorted by re-ordering the nodes the “start nodes”, then sorting will check everything over according to the edges from a Direction Matrix. No vertex is again, so the complexity is O(E+V). specifically chosen, which makes the complexity to be O*E. An alternative algorithm for topological sorting is based on Then we can get an algorithm that has much lower complexity than Kahn and DFS. At last, the implement of the algorithm by Depth-First Search (DFS) [2]. For this algorithm, edges point matlab script will be shown in the appendix part. in the opposite direction as the previous algorithm. The algorithm loops through each node of the graph, in an Index Terms—DAG, algorithm, complexity, matlab. arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort: I. -
Dualheap Sort Algorithm: an Inherently Parallel Generalization of Heapsort
Dualheap Sort Algorithm: An Inherently Parallel Generalization of Heapsort Greg Sepesi Eduneer, LLC [email protected] 2007 June 20 ABSTRACT The proposed dualheap sort algorithm employs the dualheap selection algorithm [3] to recursively partition A generalization of the heapsort algorithm is proposed. subheaps in half as shown in Figure 1-1. When the At the expense of about 50% more comparison and subheaps become too small to partition any more, the move operations for typical cases, the dualheap sort array is sorted. In the figure, the downward triangles algorithm offers several advantages over heapsort: represent the partitions with larger values, the upward improved cache performance, better performance if triangles represent the partitions with smaller values, the input happens to be already sorted, and easier and the arrow represents the direction of increasing parallel implementations. values and increasing heap indices, indicating that the subheaps with smaller values employ negative indices. 1. ALGORITHM OVERVIEW At the expense of about 50% more comparison and A heap is an array with elements regarded as nodes in move operations for the typical case, the dualheap sort algorithm offers significant improvements to heapsort’s a complete binary tree, where node j is the parent of small but important set of inefficiencies: nodes 2j and 2j+1, and where the value of each parent node is superior to the values of its children. This superiority of all the parent nodes is commonly called • When the input is already sorted, dualheap the heap condition. sort performs zero move operations and just NlogN comparison operations. • Heapsort is an elegant and popular sorting algorithm The dualheap sort has better cache by J.W.J. -
Merkle Trees and Directed Acyclic Graphs (DAG) As We've Discussed, the Decentralized Web Depends on Linked Data Structures
Merkle trees and Directed Acyclic Graphs (DAG) As we've discussed, the decentralized web depends on linked data structures. Let's explore what those look like. Merkle trees A Merkle tree (or simple "hash tree") is a data structure in which every node is hashed. +--------+ | | +---------+ root +---------+ | | | | | +----+---+ | | | | +----v-----+ +-----v----+ +-----v----+ | | | | | | | node A | | node B | | node C | | | | | | | +----------+ +-----+----+ +-----+----+ | | +-----v----+ +-----v----+ | | | | | node D | | node E +-------+ | | | | | +----------+ +-----+----+ | | | +-----v----+ +----v-----+ | | | | | node F | | node G | | | | | +----------+ +----------+ In a Merkle tree, nodes point to other nodes by their content addresses (hashes). (Remember, when we run data through a cryptographic hash, we get back a "hash" or "content address" that we can think of as a link, so a Merkle tree is a collection of linked nodes.) As previously discussed, all content addresses are unique to the data they represent. In the graph above, node E contains a reference to the hash for node F and node G. This means that the content address (hash) of node E is unique to a node containing those addresses. Getting lost? Let's imagine this as a set of directories, or file folders. If we run directory E through our hashing algorithm while it contains subdirectories F and G, the content-derived hash we get back will include references to those two directories. If we remove directory G, it's like Grace removing that whisker from her kitten photo. Directory E doesn't have the same contents anymore, so it gets a new hash. As the tree above is built, the final content address (hash) of the root node is unique to a tree that contains every node all the way down this tree. -
Graph Algorithms G
Bipartiteness Graph G = (V,E) is bipartite iff it can be partitioned into two sets of nodes A and B such that each edge has one end in A and the other Introduction to Algorithms end in B Alternatively: Graph Algorithms • Graph G = (V,E) is bipartite iff all its cycles have even length • Graph G = (V,E) is bipartite iff nodes can be coloured using two colours CSE 680 Question: given a graph G, how to test if the graph is bipartite? Prof. Roger Crawfis Note: graphs without cycles (trees) are bipartite bipartite: non bipartite Testing bipartiteness Toppgological Sort Method: use BFS search tree Recall: BFS is a rooted spanning tree. Algorithm: Want to “sort” or linearize a directed acyygp()clic graph (DAG). • Run BFS search and colour all nodes in odd layers red, others blue • Go through all edges in adjacency list and check if each of them has two different colours at its ends - if so then G is bipartite, otherwise it is not A B D We use the following alternative definitions in the analysis: • Graph G = (V,E) is bipartite iff all its cycles have even length, or • Graph G = (V, E) is bipartite iff it has no odd cycle C E A B C D E bipartit e non bipartite Toppgological Sort Example z PerformedonaPerformed on a DAG. A B D z Linear ordering of the vertices of G such that if 1/ (u, v) ∈ E, then u appears before v. Topological-Sort (G) 1. call DFS(G) to compute finishing times f [v] for all v ∈ V 2. -
Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ
Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. ! Instructor: X. Zhang Acknowledgement • The set of slides have use materials from the following resources • Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ. • Slides from Dr. M. Nicolescu from UNR • Slides sets by Dr. K. Wayne from Princeton • which in turn have borrowed materials from other resources • Other online resources 2 Outline • Sorting problems and algorithms • Divide-and-conquer paradigm • Merge sort algorithm • Master Theorem • recursion tree • Median and Selection Problem • randomized algorithms • Quicksort algorithm • Lower bound of comparison based sorting 3 Sorting Problem • Problem: Given a list of n elements from a totally-ordered universe, rearrange them in ascending order. CS 477/677 - Lecture 1 4 Sorting applications • Straightforward applications: • organize an MP3 library • Display Google PageRank results • List RSS news items in reverse chronological order • Some problems become easier once elements are sorted • identify statistical outlier • binary search • remove duplicates • Less-obvious applications • convex hull • closest pair of points • interval scheduling/partitioning • minimum spanning tree algorithms • … 5 Classification of Sorting Algorithms • Use what operations? • Comparison based sorting: bubble sort, Selection sort, Insertion sort, Mergesort, Quicksort, Heapsort, … • Non-comparison based sort: counting sort, radix sort, bucket sort • Memory (space) requirement: • in place: require O(1), O(log n) memory • out of place: -
6.042J Chapter 6: Directed Graphs
“mcs-ftl” — 2010/9/8 — 0:40 — page 189 — #195 6 Directed Graphs 6.1 Definitions So far, we have been working with graphs with undirected edges. A directed edge is an edge where the endpoints are distinguished—one is the head and one is the tail. In particular, a directed edge is specified as an ordered pair of vertices u, v and is denoted by .u; v/ or u v. In this case, u is the tail of the edge and v is the ! head. For example, see Figure 6.1. A graph with directed edges is called a directed graph or digraph. Definition 6.1.1. A directed graph G .V; E/ consists of a nonempty set of D nodes V and a set of directed edges E. Each edge e of E is specified by an ordered pair of vertices u; v V . A directed graph is simple if it has no loops (that is, edges 2 of the form u u) and no multiple edges. ! Since we will focus on the case of simple directed graphs in this chapter, we will generally omit the word simple when referring to them. Note that such a graph can contain an edge u v as well as the edge v u since these are different edges ! ! (for example, they have a different tail). Directed graphs arise in applications where the relationship represented by an edge is 1-way or asymmetric. Examples include: a 1-way street, one person likes another but the feeling is not necessarily reciprocated, a communication channel such as a cable modem that has more capacity for downloading than uploading, one entity is larger than another, and one job needs to be completed before another job can begin.