Synthesis and Characterization of Some Novel Mannich Base Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Characterization of Some Novel Mannich Base Compounds Synthesis and Characterization of Some Novel Mannich Base Compounds Dr. P. Sounthari Dr. P. R. Sivakumar Dr. P. Sounthari Dr. P.R. Sivakumar Assistant Professor, PG & Research Department of Department of Chemistry, Chemistry, PSG College of Arts and Government Arts Science, Coimbatore- College (Autonomous), 641 014. Coimbatore - 641 018, Tamil Nadu, India. ISBN 978-93-89631-02-9 ISBN 978-93-89631-04-3 (eBook) https://doi.org/10.34256/ioriip196 © IOR INTERNATIONAL PRESS. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This IOR INTERNATIONAL PRESS imprint is published by the registered company IOR PRESS. The registered company address is: 5/11, Perumal Kovil Street, Naickenpalayam, Coimbatore- 641020 Tamil Nadu, India. Synopsis The present study includes Synthesis of new Mannich base compounds based on some 1, 3, 5-triazine substituted uracil derivatives with formaldehyde and secondary amines. The title compounds were screened for their in vitro antimicrobial activity against Bacillus subtitle, Pseudonomous Aeruginosa, Staphylococcus aureoles and E.Colli and three fungal species Aspergillus niger, Candida Albicans and Aspergillus fumigatus using the disc diffusion method. Most of the synthesized compounds appeared with promising antimicrobial and antioxidant activity. The structure of the novel compounds were elucidated on the basis of IR, 1H and 13C NMR spectroscopy. Authors Dr. P. Sounthari was working as Assistant Professor in the Department Chemistry of CBM College Kovaipudur and PSG College of Arts and Science, Coimbatore. She has completed M.Sc from CBM College Kovaipudur, Coimbatore and Ph.D in Chemistry from PSGR Krishnammal College for Women, Coimbatore. She is a versatile teacher having three years of Experience in the field of teaching. She participated and presented many papers in National and International Conferences, Seminars and Workshops. She acts as Resource person in “Young student scientist’s programme” sponsored by the TNSCST organized by the PSG College of Arts and Science, Coimbatore. She has to her credit several articles and research papers published in various National and International Journals. Dr. P.R. Sivakumar, Research Scholar in PG & Research Department of Chemistry, Government Arts College, Coimbatore. He has completed M.Sc and Ph.D in Chemistry from Government Arts College, Coimbatore. He has completed B.Ed from Mother Terasa College, Salem. He participated and presented many papers in National and International Conferences, Seminars and Workshops. He has to his credit several articles and research papers published in various National and International Journals. Contents 1 Introduction ........................................................................................................................ 1 1.1 Introduction Green Chemistry ..................................................................................... 1 1.2 Principles of Green Chemistry ..................................................................................... 2 1.3 Green Chemistry - The Need of the Day...................................................................... 3 1.4 Scope of Green Chemistry ........................................................................................... 4 1.5 Industrial Interest in Green Chemistry ......................................................................... 4 1.6 Green Chemistry in Education ..................................................................................... 5 1.7 Microwave in Organic Synthesis ................................................................................. 5 1.8 Principles of Microwave Activation ............................................................................ 6 1.9 Applications of Microwave Chemistry ........................................................................ 8 1.9.1 Applications in Analytical Chemistry ............................................................... 9 1.9.2 Applications in Chemical Synthesis ............................................................... 10 1.9.3 Applications in Polymer Chemistry ................................................................ 12 1.10 Various Types of Microwave Assisted Organic Reactions ...................................... 12 1.10.1 Microwave Assisted Reactions using Solvents ............................................. 12 1.10.2 Microwave assisted Reactions under Solvent-Free Condition. ..................... 14 1.10.3 Microwave assisted Reactions using Solid Liquid Phase .............................. 15 1.10.4 Microwave assisted Reactions on Mineral Supports in Dry Media .............. 17 References ....................................................................................................................... 18 2 Schiff Bases - Interesting Range of Applications in Various Fields of Science ............ 21 2.1 Introduction ............................................................................................................... 21 2.1.1 Biological activity ........................................................................................... 21 2.1.2 Antibacterial properties ................................................................................... 21 2.1.3 Antifungal properties ...................................................................................... 22 2.1.4 Biocidal properties .......................................................................................... 22 2.1.5 Antiviral properties ......................................................................................... 22 2.1.6 Antimalarial properties ................................................................................... 23 2.1.7 Anticancer properties ...................................................................................... 23 2.2 Introduction to Mannich Reaction ............................................................................. 23 2.2.1 Mannich reaction: A versatile and convenient approach to bioactive skeletons: .................................................................................................. 25 2.2.2 Mannich reaction and its modern variants ...................................................... 25 2.2.3 Application of Mannich reaction in bioactive molecule synthesis .................. 26 2.2.4 Synthesis of antimalarial molecules ................................................................ 27 2.2.5 Synthesis of antitumour molecules ................................................................. 27 2.2.6 Synthesis of antimicrobial agents ................................................................... 28 2.2.7 Synthesis of anti-inflammatory molecules ...................................................... 28 2.2.8 Synthesis of anticonvulsant molecules............................................................ 28 2.3 Introduction to Heterocyclic Compounds .................................................................. 29 2.3.1 Pyrimidine compounds ................................................................................... 30 2.3.2 Triazine derivatives......................................................................................... 31 References ....................................................................................................................... 33 3 Review of Literature ......................................................................................................... 38 References ....................................................................................................................... 50 4 Scope of the Present Investigation ................................................................................... 53 References ....................................................................................................................... 55 5 Experimental Methods ..................................................................................................... 56
Recommended publications
  • Fluorescent Aminal Linked Porous Organic Polymer for Reversible Iodine Capture and Sensing Muhammad A
    www.nature.com/scientificreports OPEN Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing Muhammad A. Sabri1, Mohammad H. Al‑Sayah2, Susan Sen2, Taleb H. Ibrahim1 & Oussama M. El‑Kadri2* A novel triazene-anthracene-based fuorescent aminal linked porous organic polymer (TALPOP) was prepared via metal free-Schif base polycondensation reaction of 9,10-bis-(4,6-diamino-S‑triazin‑ 2-yl)anthracene and 2-furaldehyde. The polymer has exceptional chemical and thermal stabilities and exhibit good porosity with Brunauer–Emmett–Teller surface area of 401 m2g−1. The combination of such porosity along with the highly conjugated heteroatom-rich framework enabled the polymer to exhibit exceptional iodine vapor uptake of up to 314 wt % and reversible iodine adsorption in solution. Because of the inclusion of the anthracene moieties, the TALPOP exhibited excellent 3 −1 detection sensitivity towards iodine via forescence quenching with Ksv value of 2.9 × 10 L mol . The cost efective TALPOP along with its high uptake and sensing of iodine, make it an ideal material for environmental remediation. Nuclear energy is becoming one of the most feasible alternative sources to meet the ever-increasing energy demand and minimize the emission of greenhouse gases because of its high-density energy, minimal carbon footprints, and low operation cost1–4. Despite such advantages, the potential emissions of radioactive material 129 131 3 14 85 (such as I and I, H, CO2, and Kr) from nuclear energy power plants is a major drawback of this tech- nology due to the serious environmental and health efect of these materials4,5.
    [Show full text]
  • New Insights Into the Mechanism of Schiff Base Synthesis from Aromatic
    A peer-reviewed version of this preprint was published in PeerJ on 15 December 2020. View the peer-reviewed version (peerj.com/articles/ochem-4), which is the preferred citable publication unless you specifically need to cite this preprint. Silva PJ. 2020. New insights into the mechanism of Schiff base synthesis from aromatic amines in the absence of acid catalyst or polar solvents. PeerJ Organic Chemistry 2:e4 https://doi.org/10.7717/peerj-ochem.4 New insights into the mechanism of Schiff base synthesis from aromatic amines in the absence of acid catalyst or polar solvents Pedro J Silva Corresp. 1 1 FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal Corresponding Author: Pedro J Silva Email address: [email protected] Extensive computational studies of the imine synthesis from amines and aldehydes in water have shown that the large-scale structure of water is needed to afford appropriate charge delocalisation and enable sufficient transition state stabilisation. These insights cannot, however, be applied to the understanding of the reaction pathway in apolar solvents due their inability to form extensive hidrogen-bonding networks. In this work, we perform the first computational studies of this reaction in apolar conditions. This density- functional study of the reaction of benzaldehyde with four closely related aromatic amines (aniline, o-toluidine, m-toluidine and p-toluidine) shows that an additional molecule of amine may provide enough stabilization of the first transition state even in the absence of a hydrogen bonding network. Our computations also show that the second reaction step cannot take place unless an extra proton is added to the system but, crucially, that reaction rate is so high that even picomolar amounts of protonated base are enough to achieve realistic rates.
    [Show full text]
  • Study of Reactions of Two Mannich Bases Derived of 4’-Hydroxychalcones with Glutathione by RP‑TLC, RP‑HPLC and RP‑HPLC‑ESI‑MS Analysis
    http://dx.doi.org/10.21577/0103-5053.20160260 J. Braz. Chem. Soc., Vol. 28, No. 6, 1048-1062, 2017. Printed in Brazil - ©2017 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Article Study of Reactions of Two Mannich Bases Derived of 4’-Hydroxychalcones with Glutathione by RP-TLC, RP-HPLC and RP-HPLC-ESI-MS Analysis Aline Bernardes,a,b Caridad N. Pérez,a Mátyás Mayer,c Cameron C. da Silva,a Felipe T. Martinsa and Pál Perjési*,b aInstituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia-GO, Brazil bInstitute of Pharmaceutical Chemistry and cDepartment of Forensic Medicine, University of Pécs, H-7624 Pécs, Hungary 4’-Hydroxychalcones have been reported to possess several beneficial biological effects. Several lines of evidence accumulated to demonstrate increased biological activities of the Mannich base derivatives of the parent 4’-hydroxychalcones. Bioactivities of chalcones and related α,β-unsaturated ketones are frequently associated with their reactivity with cellular thiols, such as GSH. For comparison of GSH reactivity, two bis Mannich bases of two 4’-hydroxychalcones were synthesized and reacted with GSH under non-cellular conditions. Reversed-phase thin layer chromatography (RP-TLC) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis showed formation of two polar products which structures were confirmed by RP-HPLC-ESI-MS (RP-HPLC-electrospray ionization mass spectrometry) as 1:1 chalcone-GSH adducts in each case. At pH values below 8.0, the two bis Mannich bases showed higher GSH reactivity than two 4’-hydroxychalcones. Influence of the nature of the amino groups, the ring-B substituents and pH of the medium on reactivity was also investigated.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Metal Complexes of Schiff's Bases Containing Sulfonamides Nucleus: A Review. Zainab Hussain1, Majid Khalaf2, Hadeel Adil2, Dheaa Zageer2, 3, Firas Hassan2, Salam Mohammed4, and Emad Yousif1*. 1Department of Chemistry, College of Science, Misan University, Misan, Iraq . 2Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq. 3Forensic DNA Center for Research and Training, Al-Nahrain University, Baghdad, Iraq. 4College of Engineering and Architecture, University of Nizwa, Birkat Almouz, 616 Nizwa, Oman. ABSTRACT Schiff's bases are versatile ligands which are synthesized from the condensation of primary amines with carbonyl groups. Schiff's bases play an important role in Inorganic chemistry due to formation of very stable complexes with various transition and inner-Transition Metals. Transition metal complexes derived from the Schiff base ligands have widly applications. This review summarizes some metal complexes of schiff's bases derived from sulfonamide derivatives and reviewed the applications of Schiff's bases chelates in quantitative analysis. Keywords: Schiff bases, Metal complexes, Quantitative analysis. *Corresponding author September – October 2016 RJPBCS 7(5) Page No. 1008 ISSN: 0975-8585 Overview of of Schiff's bases A Schiff's base is a nitrogen analog of an aldehyde or ketone in which the C=O group is replaced by C=N-R group. It is usually formed by condensation of an aldehyde or ketone with a primary amine according to the following scheme (Scheme 1): Scheme 1: Formation of Schiff's bases. Where R, may be an alkyl or an aryl group. Schiff's bases that contain aryl substituents are substantially more stable and more readily synthesized, while those which contain alkyl substituents are relatively unstable.
    [Show full text]
  • Synthesis and Characterization of Polymeric Schiff Bases
    SYNTHESIS AND CHARACTERIZATION OF POLYMERIC SCHIFF BASES FROM 2,5-DIFORMYLFURAN A Thesis Present to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Tengfei Xiang December, 2012 SYNTHESIS AND CHARACTERIZATION OF POLYMERIC SCHIFF BASES FROM 2,5-DIFORMYLFURAN Tengfei Xiang Thesis Approved: Accepted: Advisor Dean of the College Dr. Yi Pang Dr. Chand Midha Co-Advisor Dean of the Graduate School Dr. Ping Yi Dr. George R. Newkome Department Chair Date Dr. Kim C. Calvo ii ABSTRACT Furan derivatives have the potential to be an alternative resource since it can be obtained from biomass in large scale. Many monomers derived from furfural and 5-hydroxymethylfurfural (HMF), have been used in polymerization investigation in recent years. However, few studies in using 2,5-diformylfuran(DFF) as monomer has been reported, probably due to the limited availability of monmer. Polymeric Schiff bases (or polyimines) is a class of materials containing –CH=N structural unit, which exhibit good thermal stability, useful mechanical properties. In this work, the polymeric Schiff bases obtained from polycondensation of DFF and aromatic, aliphatic diamines, and more comprehensive characterization study has been carried out. FT-IR and 13C Solid NMR study of products confirmed the formation of – CH=N structural unit. And MALDI-TOF mass spectrum showed a typical polymer pattern, providing further understanding on the polymerization process. Thermal Analysis had also been carried out for both alphatic and aromatic polymeric Schiff Bases. iii DEDICATION I would like to dedicate this thesis to my mother, Yumei Jiang, for her love, patience and understanding.
    [Show full text]
  • Generation of a Structurally Diverse Library Through Alkylation and Ring
    70 Acta Chim. Slov. 2013, 60, 70–80 Scientific paper Generation of a Structurally Diverse Library through Alkylation and Ring Closure Reactions Using 3-Dimethylamino-1-(thiophen-2-yl)propan-1-one Hydrochloride* Gheorghe Roman Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodâ, Ias¸i 700487, Romania Corresponding author: E-mail: [email protected] Received: 01-06-2012 Abstract 3-Dimethylamino-1-(thiophen-2-yl)propan-1-one hydrochloride (2), a ketonic Mannich base derived from 2-acetyl- thiophene, was used as a starting material in different types of alkylation and ring closure reactions with a view to gene- rate a structurally diverse library of compounds. Compound 2 reacts with S-alkylated dithiocarbamic acid salts and aryl mercaptans to produce dithiocarbamates and thioethers, respectively. The dimethylamino moiety in compound 2 was exchanged with various aliphatic secondary and aromatic primary and secondary amines, whereas monocyclic NH-azoles such as pyrazole, imidazole, 1,2,4-triazole, and tetrazole were N-alkylated by compound 2. Ketones, pyrrole and in- doles have been the substrates subjected to C-alkylation reactions by compound 2. Ring closure reactions of compound 2 with a suitable bifunctional nucleophile yielded pyrazolines, pyridines, 2,3-dihydro-1,5-1H-benzodiazepines, 2,3- dihydro-1,5-1H-benzothiazepine, pyrimido[1,2-a]benzimidazole and 4-hydroxypiperidine derivatives. Keywords: Ketonic Mannich base, alkylation, amine exchange, cyclization. 1. Introduction through the replacement of the easily leaving dimethyla- mino group by various nucleophiles. Also, several cycliza- The chemistry of Mannich bases has drawn a great tions of the aforementioned Mannich base with bifunctio- deal of attention owing to the high synthetic potential and nal nucleophiles to 5-, 6- and 7-membered nitrogen-con- the outstanding applications of this class of compounds.2–4 taining heterocycles have been investigated.
    [Show full text]
  • New Insights Into the Mechanism of Schiff Base Synthesis from Aromatic Amines in the Absence of Acid Catalyst Or Polar Solvents
    New insights into the mechanism of Schiff base synthesis from aromatic amines in the absence of acid catalyst or polar solvents Pedro J. Silva1,2 1 FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal 2 UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal ABSTRACT Extensive computational studies of the imine synthesis from amines and aldehydes in water have shown that the large-scale structure of water is needed to afford appropriate charge delocalization and enable sufficient transition state stabilization. These insights cannot, however, be applied to the understanding of the reaction pathway in apolar solvents due their inability to form extensive hydrogen-bonding networks. In this work, we perform the first computational studies of this reaction in nonpolar conditions. This density-functional study of the reaction of benzaldehyde with four closely related aromatic amines (aniline, o-toluidine, m-toluidine and p-toluidine) shows that, although an additional molecule of amine may provide some stabilization of the first transition state even in the absence of a hydrogen bonding network, this is insufficient to achieve high reaction rates. Our computations also show that when an extra proton is added to the spectator amine, the activation energies become so low that even picomolar amounts of protonated base are enough to achieve realistic rates. Additional computations show that those minute amounts of protonated base may be obtained under reaction conditions without the addition of extraneous acid through the auto-protolysis of the amines themselves. To our knowledge, this is the first report of a role for the auto-protolysis of anilines in their extensive reactional repertoire.
    [Show full text]
  • Mannich Reaction
    1. Introduction 1.1- Mannich Reaction The Mannich reaction is three component condensation in which a compound containing an active hydrogen atom is allowed to react with formaldehyde and an NH-amine derivative . Secondary amines rather than primary amines and ammonia are employed , the resulting product (Mannich Base ) is an amine compound having the N atom linked to the R substrate through a methylene group 1,2. The aminoalkylation of CH-acidic compounds was described by several authors as early as the 19th. century. However, it was Carl Mannich who was the first to recognize the enormous significance of this reaction , and it was he who extended the chemistry into a broad based synthetic methodology through systematic research. Since then this reaction that now carries his name has developed into one of the most important C-C bond-forming reactions in organic chemistry3,4. The Mannich reaction is a classical method for the preparation of β -aminoketones and aldehydes (Mannich bases) and, as such, is one of the most important basic reaction types in organic chemistry. It is the key step in the synthesis of numerous pharmaceuticals and natural products3,4. 1 The Mannich reaction can be presented by the following equation: The essential feature of the reaction is the replacement of the active hydrogen atom by an aminomethyl or substituted aminomethyl group. The symbolizes the active hydrogen component which includes ketones, aldehydes, acids, esters, phenols, acetylenes, picolines, nitroalkanes and quinolines1,2. 1.2- Mechanism of the Mannich reaction The mechanism of the Mannich reaction has been well investigated, the condensation reaction occurs in two steps: first, the amine reacts with formaldehyde to give condensation product (5 ), (6), ( 7) (step I) which then attacks the substrate R-H (step II) .The reaction does not normally follow the other possible route (step III and IV) ; however, some successful reaction between hydroxymethyl derivatives (8) and alkylamines to give Mannich bases (9) should be mentioned .
    [Show full text]
  • The Preparation and Use of Metal Salen Complexes Derived from Cyclobutane Diamine
    THE PREPARATION AND USE OF METAL SALEN COMPLEXES DERIVED FROM CYCLOBUTANE DIAMINE by SMITA S. PATIL B. Tech., University of Mumbai, 2005 M. Tech., University of Mumbai, 2007 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemistry College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2014 Abstract The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions.
    [Show full text]
  • International Journal of Chemtech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.5, Pp 54-60, 2015
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.5, pp 54-60, 2015 National conference on Nanomaterials for Environmental [NCNER-2015] 19th & 20th of March 2015 Synthesis, Characterisation and Antibacterial activities of Schiff base [New fuchsin] functionalised silver nanoparticles Suba kannaiyan*1, Easwaramoorthi2, V.Andal1 1Centre for Material science, KCG College of Technology, India 2Department of Chemistry, B.S.Abdur Rahman University, India Abstract: Syntheses of materials with antibacterial property are immense field of research in material science. In this paper biologically active new fuchsin based Schiff base (condensation reaction of new fuchsin and salicylaldehyde) was functionalised on green synthesized Ag nanoparticle. The Schiff base stabilized Ag nanoparticle wascharacterized by XRD, FT-IR, SEM and UV-Vis spectroscopy techniques. XRD pattern shows the formation of nanosilver with face-centered cubic structure. The FT-IR spectrum confirms the formation and stabilization of Schiff base over the Ag nanoparticle. SEM analysis confirms that particles areelongated in shape. Antibacterial activities ofprepared compounds were studied on Gram positive (Bacillus cereus, Staphylococcus aureus)and Gram negative (Escherichia coli, Klebsiellapneumonia) bacteria.The results revealed that Schiff base capped Ag nanoparticle showed high biological activity than Schiff base. Keywords: Schiff base, Newfuchsin, XRD,FT-IR, Silver nanoparticle. Introduction Synthesis of Metal nanoparticles was an intriguing area in research, due to its unusual chemical and physical properties such as catalytic, electronic, optical, magnetic, as well as its application in diverse field [1].Various methods of synthesizing nanoparticles have been developed such as chemical reduction which involves the reduction of metal chlorides or nitrates by strong reducing agents[2], sonochemical[3] ,polyol[4] ,solvothermal[5] ,hydrothermal[6] ,surfactants[7] etc.
    [Show full text]
  • Crystal Structure of Bacterial Cystathionine -Lyase in The
    crystals Article Crystal Structure of Bacterial Cystathionine G-Lyase in The Cysteine Biosynthesis Pathway of Staphylococcus aureus Dukwon Lee 1 , Soyeon Jeong 1, Jinsook Ahn 1, Nam-Chul Ha 1,* and Ae-Ran Kwon 2,* 1 Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; [email protected] (D.L.); [email protected] (S.J.); [email protected] (J.A.) 2 Department of Beauty Care Industry, College of Medical Science, Deagu Haany University, Gyeongsan, Gyeongbuk 38610, Korea * Correspondence: [email protected] (N.-C.H.); [email protected] (A.-R.K.); Tel.: +82-2-880-4853 (N.-C.H.); +82-53-819-1585 (A.-R.K.) Received: 17 October 2019; Accepted: 5 December 2019; Published: 9 December 2019 Abstract: Many enzymes require pyridoxal 5’-phosphate (PLP) as an essential cofactor and share active site residues in mediating diverse enzymatic reactions. Methionine can be converted into cysteine by cystathionine γ-lyases (CGLs) through a transsulfuration reaction dependent on PLP. In bacteria, MccB, also known as YhrB, exhibits CGL activity that cleaves the C–S bond of cystathionine at the γ position. In this study, we determined the crystal structure of MccB from Staphylococcus aureus in its apo- and PLP-bound forms. The structures of MccB exhibited similar molecular arrangements to those of MetC-mediating β-elimination with the same substrate and further illustrated PLP-induced structural changes in MccB. A structural comparison to MetC revealed a longer distance between the N-1 atom of the pyridine ring of PLP and the Oδ atom of the Asp residue, as well as a wider and more flexible active site environment in MccB.
    [Show full text]
  • Synthesis of Triacetic Acid Lactone Mannich Bases and Their Inhibition of Corrosion John Rey Apostol Romal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion John Rey Apostol Romal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemistry Commons Recommended Citation Romal, John Rey Apostol, "Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion" (2016). Graduate Theses and Dissertations. 15802. https://lib.dr.iastate.edu/etd/15802 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Synthesis of triacetic acid lactone Mannich bases and their inhibition of corrosion by John Rey Apostol Romal A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Organic Chemistry Program of Study Committee: George A. Kraus, Major Professor Brent Shanks Arthur Winter Iowa State University Ames, Iowa 2016 Copyright © John Rey Apostol Romal, 2016. All rights reserved. ii DEDICATION To my family and friends. iii TABLE OF CONTENTS DEDICATION ........................................................................................................... ii LIST OF ABBREVIATIONS
    [Show full text]