The Wind-Wave Climate of the Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

The Wind-Wave Climate of the Pacific Ocean The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The wind-wave climate of the Pacific Ocean. Mark Hemer, Jack Katzfey and Claire Hotan Final Report 30 September 2011 Report for the Pacific Adaptation Strategy Assistance Program Department of Climate Change and Energy Efficiency [Insert ISBN or ISSN and Cataloguing-in-Publication (CIP) information here if required] Enquiries should be addressed to: Mark Hemer Email. [email protected] Distribution list DCCEE 1 Copyright and Disclaimer © 2011 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important Disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Contents Executive summary .................................................................................................... 3 1. Introduction ..................................................................................................... 11 2. Existing Knowledge ........................................................................................ 16 3. Available Data .................................................................................................. 20 3.1 United States Army Corps of Engineers (USACE) Wave Information Study (WIS) 20 3.2 ECMWF ERA-40 ..................................................................................................... 20 3.3 ERA-Interim ............................................................................................................ 21 3.4 Satellite Altimeter record (Swinburne University) .................................................... 22 3.5 In-situ Buoy Data .................................................................................................... 22 4. Data Processing Methods .............................................................................. 24 5. Assessment of the present Wave Climate..................................................... 25 5.1.1 Significant Wave Height ..................................................................................... 25 5.1.2 Directional wave climate ..................................................................................... 32 5.1.3 Site records ......................................................................................................... 43 6. Preliminary wave climate projections for the pacific region ....................... 51 6.1 An assessment of the PCCSP CCAM surface winds ............................................. 52 6.1.1 Evaluation of Currrent Climate CCAM 60 km simulations .................................. 52 6.1.2 Evaluation of the Climate Change signal in the CCAM 60 km simulation........... 58 6.2 Unadjusted CCAM forced wave models ................................................................. 61 6.2.1 Site Records ....................................................................................................... 65 6.3 Bias-Adjusted CCAM forced wave models ............................................................. 67 6.3.1 Site records ......................................................................................................... 70 6.4 Preliminary evaluation of the Climate Change signal in the Pacific wave climate .. 73 6.4.1 Un-adjusted CCAM forced runs .......................................................................... 73 6.4.2 Bias-adjusted CCAM forced runs........................................................................ 76 7. Recommendations .......................................................................................... 84 References ................................................................................................................ 86 Acknowledgements .................................................................................................. 90 Appendix A – Verification of ERA-Interim wave field ............................................ 92 A.1 Assessment of ERA-Interim against buoy data .......................................................... 92 A.2 Assessment of ERA-Interim against altimeter record ................................................. 97 Appendix B – WAVE roses from CCAM forced Wave model, for representative sites ................................................................................................................ 103 Un-adjusted CCAM forced runs (1979-2009). ................................................................ 103 Bias-adjusted CCAM forced runs (1979-2009). .............................................................. 106 i Un-adjusted CCAM forced runs (2070-2099). ................................................................. 108 Bias-adjusted CCAM forced runs (2070-2099). .............................................................. 111 EXECUTIVE SUMMARY EXECUTIVE SUMMARY Surface wind-waves are a key driver of coastal zone processes in the Pacific Island Countries and Territories (PICTs), and their climatological variability must be considered within any comprehensive assessment of potential climate change driven impacts on the coastal zone. These wave driven processes can impact on many aspects of the PICT coastal environment, including: coastal flooding during storm wave events; coastal erosion, both during episodic storm events and due to long term changes in integrated wave climate; characterisation of reef morphology and marine habitat/species distribution; flushing and circulation of lagoons; and transport and energy solutions. Pacific Island Countries and Territories (PICTs) are arguably more vulnerable to variability and change in the surface wind-wave climate than sea-level rise. Future coastal vulnerability assessments for the region must consider potential changes in wave properties, together with the influence of mean sea-level rise and changes to other sea-level extremes. In order to support such assessments, this project had two objectives: 1. Describe the current wave climate on the basis of existing information, including understanding the dominant modes of seasonal and inter-annual variability in the Pacific wave climate, and identifying gaps in current knowledge which require future attention. 2. Carry out a preliminary assessment of potential changes in Pacific basin wave climate under future climate scenarios. The literature describing the current knowledge of the Pacific basin wave climate has been reviewed, with focus on the region of the PICTs, including Hawaii. Throughout this region, a multi-modal wave spectrum is observed, with contributions from locally trade wind generated seas, swell waves generated in both the northern and southern hemisphere extratropical storm belts, and episodic tropical storm (cyclone) events (See Figure ES1). The relative fraction of each of these components depends on location. Islands located on or north of the equator have wave fields dominated by sea generated by north-easterly trade winds and the northern Pacific generated swell, although Islands located further eastwards (e.g., Hawaii) also experience southerly ocean swell. Islands located south of the equator have wave fields dominated by sea generated by south-easterly trade winds. Southern Pacific generated swell is also a major contributor to the wave climate at those islands which are not sheltered by other islands. For example, Samoa, French Polynesia and Fiji both experience southern ocean swell. Available long-term wave data for the Pacific region has been compiled, including available in- situ wave buoy records, model hindcast and reanalyses products, and satellite altimeter derived records. We have assessed these datasets to determine their ability to describe the observed wave climate in the region. The wind-wave climate of the Pacific Ocean • 30 July 2011, Version – Draft only 3 EXECUTIVE SUMMARY Figure ES1: The wind-wave climate in the region of the PICTs has several contributing components (multi-modal). To understand climatological variability of wave climate in the region, the response of each of these contributions must be understood. The in-situ collected wave buoy data held by SOPAC is a valuable dataset describing the wave field at selected locations within the PICTs. However, these data are limited to few locations, and have a maximum record length of 5 years. Consequently the data contain little information to identify the key modes of inter-annual (and decadal) wave climate variability. Only a small collection of these records contain directional information Longer term in-situ buoy records are available from within the Pacific basin, collected as part of the United States National Oceanographic and Atmospheric Administration National Buoy Data Centre (NOAA NBDC). These
Recommended publications
  • Hadley Cell and the Trade Winds of Hawai'i: Nā Makani
    November 19, 2012 Hadley Cell and the Trade Winds of Hawai'i Hadley Cell and the Trade Winds of Hawai‘i: Nā Makani Mau Steven Businger & Sara da Silva [email protected], [email protected] Iasona Ellinwood, [email protected] Pauline W. U. Chinn, [email protected] University of Hawai‘i at Mānoa Figure 1. Schematic of global circulation Grades: 6-8, modifiable for 9-12 Time: 2 - 10 hours Nā Honua Mauli Ola, Guidelines for Educators, No Nā Kumu: Educators are able to sustain respect for the integrity of one’s own cultural knowledge and provide meaningful opportunities to make new connections among other knowledge systems (p. 37). Standard: Earth and Space Science 2.D ESS2D: Weather and Climate Weather varies day to day and seasonally; it is the condition of the atmosphere at a given place and time. Climate is the range of a region’s weather over one to many years. Both are shaped by complex interactions involving sunlight, ocean, atmosphere, latitude, altitude, ice, living things, and geography that can drive changes over multiple time scales—days, weeks, and months for weather to years, decades, centuries, and beyond for climate. The ocean absorbs and stores large amounts of energy from the sun and releases it slowly, moderating and stabilizing global climates. Sunlight heats the land more rapidly. Heat energy is redistributed through ocean currents and atmospheric circulation, winds. Greenhouse gases absorb and retain the energy radiated from land and ocean surfaces, regulating temperatures and keep Earth habitable. (A Framework for K-12 Science Education, NRC, 2012) Hawai‘i Content and Performance Standards (HCPS) III http://standardstoolkit.k12.hi.us/index.html 1 November 19, 2012 Hadley Cell and the Trade Winds of Hawai'i STRAND THE SCIENTIFIC PROCESS Standard 1: The Scientific Process: SCIENTIFIC INVESTIGATION: Discover, invent, and investigate using the skills necessary to engage in the scientific process Benchmarks: SC.8.1.1 Determine the link(s) between evidence and the Topic: Scientific Inquiry conclusion(s) of an investigation.
    [Show full text]
  • NWS Melbourne Marine Web Letter August 2013 (For Marine Forecast Questions 24/7: Call 321-255-0212, Ext
    NWS Melbourne Marine Web Letter August 2013 (For Marine Forecast Questions 24/7: call 321-255-0212, ext. 2) Marine Links relevant to East Central Florida Buoy 41010 It is hoped that this buoy, which went adrift in February, will be redeployed by mid to late September. Additional Marine Observations I’ve added a web page that has most of the marine observations along the east coast. http://www.srh.noaa.gov/mlb/?n=marob Note that wind/wave data became available at Sebastian Inlet via the National Data Buoy Center earlier this year. There are also some web cams with wind data. One, at Jensen Beach, has wave data too. Upwelling Some on again, off again upwelling occurred over the continental shelf this summer. This is not unusual. South to southeast winds (near shore parallel) are the primary cause of periodic upwelling. In some years, these winds are persistent and stronger than normal, which produces more prolific upwelling. In 2003, water temps in the upper 50s occurred in mid August at Daytona Beach! Typically the upwelling diminishes by late August or September. Nearshore Wave Prediction System We will soon upgrade our nearshore wave model (SWAN) to the Nearshore Wave Prediction System (NWPS). One enhancement is that Gulf Stream data will be incorporated back into the wave model. This will allow us to give better estimates for the position of the west wall of the Gulf Stream. The wave model will again be able to generate higher wave heights in the Gulf Stream during northerly wind surges. Hopefully, this functionality will be ready by Fall when cold fronts start moving through again.
    [Show full text]
  • Circulation-Wave Coupling with a Wave Parameterization for the Idealized California Coastal Region
    Circulation-Wave Coupling With a Wave Parameterization For the Idealized California Coastal Region Le Ly and Curt Collins Dept. of Oceanography Naval Postgraduate School Monterey, CA 93043 1. Introduction atmospheric model), POM (Princeton Ocean Momentum and energy transfers across the air- Model; Blumberg and Mellor, 1987), and WAM sea interface under realistic ocean conditions are wave model (Wilczak et al., 1999), and an important not only in theoretical studies, but also atmosphere-POM-WAM for the Mediterranean in many applications including marine region (Lionello et al., 1999). atmospheric and oceanic forecasts and climate Based on a new concept of oceanic turbulence modeling on all scales. Surface breaking waves and a wave breaking condition of the linear wave are believed to be an important supplier of theory, a surface wave parameterization is turbulent energy besides shear production of the developed and presented. This wave classical turbulence theory. Waves contain a parameterization with wave-dependent roughness considerable amount of momentum and energy, is tested against available data on wave- and they redistribute these quantities over great dependent turbulence dissipation, roughness distances. Wind waves supply energy for length, drag coefficient, and momentum fluxes turbulence due to breaking. Ocean waves strongly using a coupled air-wave-sea model. We also effect the air-sea system on all scale. A part of the present a circulation-wave coupling study using a energy and momentum is transferred directly wave dependent roughness (Ly and Garwood, from the atmosphere to ocean currents while 2000) and taking the wind-wave-turbulence- another part is transferred to surface waves. The current relationship into account.
    [Show full text]
  • Download Download
    I DEIA EDIÇÃO Imprensa da Universidade de Coimbra Email: [email protected] URL: http//www.uc.pt/imprensa_uc Vendas online: http://livrariadaimprensa.uc.pt DIREÇÃO Maria Luísa Portocarrero Diogo Ferrer CONSELHO CIENTÍFICO Alexandre Franco de Sá | Universidade de Coimbra Angelica Nuzzo | City University of New York Birgit Sandkaulen | Ruhr ‑Universität Bochum Christoph Asmuth | Technische Universität Berlin Giuseppe Duso | Università di Padova Jean ‑Christophe Goddard | Université de Toulouse‑Le Mirail Jephrey Barash | Université de Picardie Jerôme Porée | Université de Rennes José Manuel Martins | Universidade de Évora Karin de Boer | Katholieke Universiteit Leuven Luís Nascimento |Universidade Federal de São Carlos Luís Umbelino | Universidade de Coimbra Marcelino Villaverde | Universidade de Santiago de Compostela Stephen Houlgate | University of Warwick COORDENAÇÃO EDITORIAL Imprensa da Universidade de Coimbra CONCEÇÃO GRÁFICA Imprensa da Universidade de Coimbra IMAGEM DA CAPA Raquel Aido PRÉ ‑IMPRESSÃO Margarida Albino PRINT BY KDP ISBN 978‑989‑26‑1971‑2 ISBN DIGITAL 978‑989‑26‑1972‑9 DOI https://doi.org/10.14195/978‑989‑26‑1972‑9 Projeto CECH‑UC: UIDB/00196/2020 ‑ Centro de Estudos Clássicos e Humanísticos da Universidade de Coimbra © JULHO 2020, IMPRENSA DA UNIVERSIDADE DE COIMBRA RELENDO O PARMÉNIDES DE PLATÃO REVISITING PLATO’S PARMENIDES ANTÓNIO MANUEL MARTINS MARIA DO CÉU FIALHO (COORDS.) (Página deixada propositadamente em branco) In memoriam Samuel Scolnicov (Página deixada propositadamente em branco) Í NDICE Prefácio, Maria do Céu Fialho, António Manuel Martins .................. 9 Introdução, A. M. Martins ................................................................ 11 The ethical dimension of Plato’s Parmenides, Samuel Scolnicov .... 27 ”El engañoso dialogo de Platón consigo mismo en la primera parte del Parménides”, Néstor Luis Cordero ...............................
    [Show full text]
  • Determination of Wave Characteristics
    Guidance for Flood Risk Analysis and Mapping Determination of Wave Characteristics February 2019 Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document provides guidance to support the requirements and recommends approaches for effective and efficient implementation. Alternate approaches that comply with all requirements are acceptable. For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and Mapping webpage (https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and- mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, technical references, and other information about the guidelines and standards development process are all available here. You can also search directly by document title at https://www.fema.gov/library. Wave Determination February 2019 Guidance Document 88 Page iii Document History Affected Section or Subsection Date Description First Publication February Initial version of new transformed guidance. The content was 2019 derived from the Guidelines and Specifications for Flood Hazard Mapping Partners, Procedure Memoranda, and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Wave Determination February 2019 Guidance Document 88 Page iv Table of Contents 1.0 Overview
    [Show full text]
  • The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
    1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance.
    [Show full text]
  • El Niño and Its Impacts on Federated States of Micronesia – Pohnpei And
    El Niño and its Impacts on Federated States of Micronesia – Pohnpei and Kosrae What is El Niño? The El Niño – Southern Oscillation (ENSO) is a recurring climate pattern involving changes in the temperature of waters in the central and eastern tropical Pacific Ocean and the patterns of sea level pressure, lower- and upper-level winds, and tropical rainfall across the Pacific basin. On periods ranging from about two to seven years, the surface waters across a large swath of the tropical Pacific Ocean warm or cool by anywhere from 1°C to 3°C, compared to normal. This irregular oscillation between warm and cool patterns, referred to as the ENSO cycle, directly affects rainfall distribution in the tropics and can have a strong influence on weather across the Pacific basin. El Niño and La Niña are the extreme phases of the ENSO cycle; between these two phases is a third phase called ENSO-neutral. ENSO-neutral: Under normal conditions strong El Niño in FSM trade winds blow from the east along the equator, pushing warm water into the western Pacific Ocean. Rainfall Less more at first, but then much less; longer and drier dry-season Trade Winds Less weaker, with occasional westerly winds Tropical Cyclones More increased risk, as more storms form closer to the islands El Niño conditions occur when abnormally warm Sea Level Less waters build in tropical region of the central and eastern Pacific Ocean and are usually associated with lower at first, then gradually recovering a weakening of the easterly trade winds, sometimes even reversing to westerlies.
    [Show full text]
  • Deep Ocean Wind Waves Ch
    Deep Ocean Wind Waves Ch. 1 Waves, Tides and Shallow-Water Processes: J. Wright, A. Colling, & D. Park: Butterworth-Heinemann, Oxford UK, 1999, 2nd Edition, 227 pp. AdOc 4060/5060 Spring 2013 Types of Waves Classifiers •Disturbing force •Restoring force •Type of wave •Wavelength •Period •Frequency Waves transmit energy, not mass, across ocean surfaces. Wave behavior depends on a wave’s size and water depth. Wind waves: energy is transferred from wind to water. Waves can change direction by refraction and diffraction, can interfere with one another, & reflect from solid objects. Orbital waves are a type of progressive wave: i.e. waves of moving energy traveling in one direction along a surface, where particles of water move in closed circles as the wave passes. Free waves move independently of the generating force: wind waves. In forced waves the disturbing force is applied continuously: tides Parts of an ocean wave •Crest •Trough •Wave height (H) •Wavelength (L) •Wave speed (c) •Still water level •Orbital motion •Frequency f = 1/T •Period T=L/c Water molecules in the crest of the wave •Depth of wave base = move in the same direction as the wave, ½L, from still water but molecules in the trough move in the •Wave steepness =H/L opposite direction. 1 • If wave steepness > /7, the wave breaks Group Velocity against Phase Velocity = Cg<<Cp Factors Affecting Wind Wave Development •Waves originate in a “sea”area •A fully developed sea is the maximum height of waves produced by conditions of wind speed, duration, and fetch •Swell are waves
    [Show full text]
  • Swell and Wave Forecasting
    Lecture 24 Part II Swell and Wave Forecasting 29 Swell and Wave Forecasting • Motivation • Terminology • Wave Formation • Wave Decay • Wave Refraction • Shoaling • Rouge Waves 30 Motivation • In Hawaii, surf is the number one weather-related killer. More lives are lost to surf-related accidents every year in Hawaii than another weather event. • Between 1993 to 1997, 238 ocean drownings occurred and 473 people were hospitalized for ocean-related spine injuries, with 77 directly caused by breaking waves. 31 Going for an Unintended Swim? Lulls: Between sets, lulls in the waves can draw inexperienced people to their deaths. 32 Motivation Surf is the number one weather-related killer in Hawaii. 33 Motivation - Marine Safety Surf's up! Heavy surf on the Columbia River bar tests a Coast Guard vessel approaching the mouth of the Columbia River. 34 Sharks Cove Oahu 35 Giant Waves Peggotty Beach, Massachusetts February 9, 1978 36 Categories of Waves at Sea Wave Type: Restoring Force: Capillary waves Surface Tension Wavelets Surface Tension & Gravity Chop Gravity Swell Gravity Tides Gravity and Earth’s rotation 37 Ocean Waves Terminology Wavelength - L - the horizontal distance from crest to crest. Wave height - the vertical distance from crest to trough. Wave period - the time between one crest and the next crest. Wave frequency - the number of crests passing by a certain point in a certain amount of time. Wave speed - the rate of movement of the wave form. C = L/T 38 Wave Spectra Wave spectra as a function of wave period 39 Open Ocean – Deep Water Waves • Orbits largest at sea sfc.
    [Show full text]
  • El Niño and Its Impacts on Federated States of Micronesia – Yap And
    El Niño and its Impacts on Federated States of Micronesia – Yap and Chuuk What is El Niño? The El Niño – Southern Oscillation (ENSO) is a recurring climate pattern involving changes in the temperature of waters in the central and eastern tropical Pacific Ocean and the patterns of sea level pressure, lower- and upper-level winds, and tropical rainfall across the Pacific basin. On periods ranging from about two to seven years, the surface waters across a large swath of the tropical Pacific Ocean warm or cool by anywhere from 1°C to 3°C, compared to normal. This irregular oscillation between warm and cool patterns, referred to as the ENSO cycle, directly affects rainfall distribution in the tropics and can have a strong influence on weather across the Pacific basin. El Niño and La Niña are the extreme phases of the ENSO cycle; between these two phases is a third phase called ENSO-neutral. ENSO-neutral: Under normal conditions strong El Niño in FSM trade winds blow from the east along the equator, pushing warm water into the western Pacific Ocean. Rainfall Less more at first, but then very much less; longer and drier dry-season Trade Winds Less weaker, with occasional westerly winds Tropical Cyclones Less reduced risk, as more storms form closer to the Dateline El Niño conditions occur when abnormally warm Sea Level Less waters build in tropical region of the central and eastern Pacific Ocean and are usually associated with lower at first, then gradually recovering a weakening of the easterly trade winds, sometimes even reversing to westerlies.
    [Show full text]
  • Tropical Cyclone Part II (1+1+1 System) Geography Hons
    Tropical Cyclone Part II (1+1+1 System) Geography Hons. Paper: IV Module: V Topic: 4.1 A tropical cyclone is a system of the low pressure area surrounded by high pressure areas on all sides occurring in tropical zone bound by Tropic of Cancer in the north and Tropic of Capricorn in the south. Chief Characteristics of Tropical Cyclones 1. Tropical cyclones are of numerous forms which vary considerably in shape, size and weather conditions. 2. There are wide variations in the size of the tropical cyclones. However, the average diameter of a tropical cyclone varies from 80 to 300 km. Some of the cyclones have diameter of only 50 km or even less than that. 3. The isobars in most tropical cyclones are generally circular, indicating that most of the tropical cyclones are circular in shape. 4. The isobars are closely spaced which indicates that the pressure gradient is very steep and winds blow at high speed. 5. Most of the tropical cyclones originate on the western margins of the oceans where warm ocean currents maintain sea surface temperature above 27°C. 6. They advance with varying velocities and their velocities depend upon a number of factors. Weak cyclones move at velocities varying from 30 to 35 km/hr. while hurricanes may attain velocity of 180 km/hr. or even more. 7. They are very vigorous and move with high speed over the oceans where there are no obstructions in their way. 8. They are more frequent in late summer and autumn in the Northern Hemisphere and spring in the Southern Hemisphere.
    [Show full text]
  • Internal Waves in the Ocean: a Review
    REVIEWSOF GEOPHYSICSAND SPACEPHYSICS, VOL. 21, NO. 5, PAGES1206-1216, JUNE 1983 U.S. NATIONAL REPORTTO INTERNATIONAL UNION OF GEODESYAND GEOPHYSICS 1979-1982 INTERNAL WAVES IN THE OCEAN: A REVIEW Murray D. Levine School of Oceanography, Oregon State University, Corvallis, OR 97331 Introduction dispersion relation. A major advance in describing the internal wave field has been the This review documents the advances in our empirical model of Garrett and Munk (Garrett and knowledge of the oceanic internal wave field Munk, 1972, 1975; hereafter referred to as GM). during the past quadrennium. Emphasis is placed The GM model organizes many diverse observations on studies that deal most directly with the from the deep ocean into a fairly consistent measurement and modeling of internal waves as statistical representation by assuming that the they exist in the ocean. Progress has come by internal wave field is composed of a sum of realizing that specific physical processes might weakly interacting waves of random phase. behave differently when embedded in the complex, Once a kinematic description of the wave field omnipresent sea of internal waves. To understand is determined, it may be possible to assess . fully the dynamics of the internal wave field quantitatively the dynamical processes requires knowledge of the simultaneous responsible for maintaining the observed internal interactions of the internal waves with other waves. The concept of a weakly interacting oceanic phenomena as well as with themselves. system has been exploited in formulating the This report is not meant to be a comprehensive energy balance of the internal wave field (e.g., overview of internal waves.
    [Show full text]