Antimicrobial Activities of Dilobeia Thouarsii Roemer and Schulte, a Traditional Medicinal Plant from Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Activities of Dilobeia Thouarsii Roemer and Schulte, a Traditional Medicinal Plant from Madagascar South African Journal of Botany 87 (2013) 1–3 Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Antimicrobial activities of Dilobeia thouarsii Roemer and Schulte, a traditional medicinal plant from Madagascar Vahinalahaja Razafintsalama a, Samira Sarter b,f, Lengo Mambu c, Ranjana Randrianarivo a, Thomas Petit d, Jean François Rajaonarison e, Christian Mertz f, Danielle Rakoto a, Victor Jeannoda a,⁎ a Department of Fundamental and Applied Biochemistry, Faculty of Sciences, University of Antananarivo, BP 906, Antananarivo 101, Madagascar b CIRAD, UMR QUALISUD, 101 Antananarivo, Madagascar c UMR 7245 CNRS-MNHN, Molécule de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75005 Paris, France d Université de la Réunion, Laboratoire de Chimie Des Substances Naturelles et Des Sciences des Aliments (LCSNSA), 15 Avenue René Cassin, 97 715 Saint-Denis La Réunion, France e Institut Malgache de Recherche Appliquée (IMRA), BP 3833 Avarabohitra Itaosy, Antananarivo, Madagascar f CIRAD, UMR QUALISUD, F-34398 Montpellier, France article info abstract Article history: The leaves of Dilobeia thouarsii (Roemer and Schulte), a tree that is endemic to Madagascar (Proteaceae), are Received 24 April 2012 used in traditional Malagasy medicine to treat bacterial skin infections and wounds. This study investigated Received in revised form 22 June 2012 the in vitro antibacterial activities of D. thouarsii leaf extracts and identified the bioactive compounds with Accepted 22 February 2013 the aim of providing a scientific basis for its use against skin diseases. Using broth microdilution method Available online 2 April 2013 for leaf crude extract and its compounds, we investigated inhibition of the growth of Bacillus cereus, fi Edited by J Van Staden Bacillus megaterium, Staphylococcus aureus, Enterococcus faecalis, Vibrio harveyi, Vibrio sheri, Salmonella Typhimurium, Salmonella antarctica, Escherichia coli, and Klebsiella pneumoniae. The two purified phenolic Keywords: compounds from leaf ethyl acetate extracts (1, 2) were found to be more active than the crude extract itself. Dilobeia thouarsii The structure of the two compounds was elucidated by NMR and mass spectrometry: compound 1 was Proteaceae identified as 4-aminophenol and compound 2 as 4-hydroxybenzaldehyde. A marked inhibitory effect Medicinal plant (MIC b 0.1 mg/ml) was found against S. aureus, which is a major agent in skin infections. We observed Antibacterial moderate activities (MIC values of between 0.1 and 0.5 mg/ml) for E. faecalis, Vibrio spp., and Bacillus spp. Neither Plant extract compound was active against Salmonella spp., E. coli and K. pneumoniae (MICs > 1 mg/ml). To conclude, the high Phenolic compound antimicrobial activity of D. thouarsii leaf extracts against S. aureus supports its traditional use to treat skin infections. © 2013 SAAB. Published by Elsevier B.V. All rights reserved. 1. Introduction In vitro assays have shown that phenolic compounds are often responsible for the antimicrobial activities of different plant extracts Traditional medicine is an important component of the health care (Shikanga et al., 2010; Tepe et al., 2005; Zampini et al., 2005). Several system in Madagascar and a large number of plants remain to be species belonging to the family Proteaceae, such as Grevillea robusta, studied, including Dilobeia thouarsii, a tree that belongs to the family Toronia toru, Gevuina avellana, Kermadecia elliptica, Protea obtusifolia Proteaceae and is endemic to Madagascar (Boiteau, 1986). This or Lomatia hirsuta contain phenolic compounds (Ahmed et al., 2000; species is widely distributed in the Central, Eastern, South-Eastern Chuang and Wu, 2007; Moure et al., 2001; Perry and Brennan, regions and in the high Matsiatra Fianarantsoa in Madagascar 1997; Simonsen et al., 2006; Verotta et al., 1999). In addition, species (Bosser and Rabevohitra, 1991) and is known by the common belonging to this family display antimicrobial activities against different names of Vivaona, Hazontavolo and Tavolohazo (Rabesa, 1986). In microorganisms. L. hirsuta, which is used in traditional medicine southern Madagascar, decoctions of the leaves and bark of D. thouarsii in Chile, is active against the pathogenic fungus Candida albicans are used for abortion, or as an anthelmintic, or a diuretic (Beaujard, (MIC = 8 μg/ml) (Simonsen et al., 2006). A phenolic glycoside ester 1988; Rabesa, 1986). Concerning the East coast of Madagascar isolated from the New Zeland tree T. toru is active against Pseudomonas (Mandraka region), our ethnobotanical investigations confirmed aeruginosa, Escherichia coli and Bacillus subtilis (Perry and Brennan, the use of the leaves in traditional medicine to treat bacterial skin 1997). A glycoside compound isolated from Persoonia linearis × pinifolia, infections and wounds (Razafintsalama, 2012). a cross hybrid of P. pinifolia and P. linearis, displays antimicrobial activity against E. coli and Phytophthora cinnamoni (MacLeod et al., 1997). An ⁎ Corresponding author. Tel.: +261 32 02 402 20. extract made from leaves of Protea simplex,aplantusedinSouthAfrica E-mail address: [email protected] (V. Jeannoda). against human dysentery and diarrhea, provides good antimicrobial 0254-6299/$ – see front matter © 2013 SAAB. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.sajb.2013.02.171 2 V. Razafintsalama et al. / South African Journal of Botany 87 (2013) 1–3 activities against E. coli, Staphylococcus aureus, B. subtilis and C. albicans dissolved in sterile distilled water. The concentration of the resulting (Fawole et al., 2009). solutions was adjusted to 7 mg/ml. This was serially diluted twofold To the best of our knowledge, no report has been published on the to obtain concentration ranges of 0.027–7mg/ml.Next,100μl of each chemical composition and the biological activities of D. thouarsii concentration was added in a well (96-well microplate) containing (Bosser and Rabevohitra, 1991). In the present study, we investigated 95 μl of Zobell medium for vibrios (1 g/l yeast extract, 4 g/l peptone, the antibacterial activity of D. thouarsii and identified bioactive 30 g/l NaCl) or Mueller-Hinton broth for the other microorganisms compounds in order to provide a scientific basis for its traditional use, and 5 μl of inoculum (standardized at 1.5 × 106 cfu/ml by adjusting and to characterize the potential of this medicinal plant in Madagascar. the optical density to 0.125 at 600 nm). A positive control containing Bioassay fractionation enabled isolation of two phenolic compounds the bacterial culture without the extract and a negative control that were identified on the basis of spectroscopic data including 1D containing only the medium were also analyzed. The plates were NMR and mass spectrometry (MS). covered with sterilized aluminum foil, and then incubated for 24 h at 25 °C for Vibrio sp. and at 37 °C for the other strains. The assay was 2. Material and methods repeated three times. The MIC of each compound was defined as the lowest concentration that inhibited the microorganism growth. Bacterial 2.1. Plant material growth was visually evaluated based on the degree of turbidity (Kil et al., 2009). The leaves of D. thouarsii were harvested in Mandraka region, in the For the determination of MBC, 5 μl from each well not showing eastern part of Madagascar, 70 km from Antananarivo. Leaves were col- turbidity was placed on Mueller-Hinton agar and incubated at 37 °C lected in April 2008. The plant was identified by Dr. Rabarison Harison for 24 h. The lowest concentration at which no growth occurred on from the Botany Department of Antananarivo Faculty of Sciences. the agar plates after 24 h of incubation at 37 °C corresponded to the Reference specimens (HERB/DBEV/4708) were deposited in the MBC. herbarium of the same department of the University of Antananarivo. 2.2. Extraction of D. thouarsii leaves 3. Results and discussion Plant materials were dried at room temperature and ground to a fine 3.1. Active compounds identified powder. The obtained powder (100 g) was extracted successively through a maceration process using 500 ml × 6 of solvents of increas- Compound 1 (Fig. 1) was isolated as an amorphous powder. ing polarity (hexane, ethyl acetate and methanol). Each combined HRESI-TOF performed in the negative mode exhibited a deprotonated extract was evaporated under reduced pressure to yield crude hexane molecular ion at m/z 108.0435 [M − H]− indicating a molecular extract (0.7 g), EtOAc extract (5 g), and MeOH extract (10 g), respec- formula of C6H7NO (calcd. 108.0447) requiring 4° of unsaturation. tively. Extracts were stored at room temperature until use. The 13C NMR spectrum revealed the presence of an oxygenated quaternary carbon at δ 151.2, another quaternary carbon at δ 117.4 2.3. Bioassay-guided extract and a methine carbon at δ 115.8. The 1H NMR spectrum of this small molecule displayed an intense Part of the ethyl acetate extract (1.5 g) was subjected to flash signal of four aromatic protons at δ 6.49. As the spectra were realized chromatography on a silica gel 60 (10–40 μ) column (CC) eluted in CD3OD, the three remaining protons not observed as suggested the with 0–100% gradient of EtOAc in hexane followed by MeOH in molecular formula are exchangeable protons. Comparison with RMN EtOAc. Fourteen 100 ml fractions were collected: Hex–EtOAc 80:20 data of the sample indicated that compound 1 was a 4-aminophenol (1–4), Hex–EtOAc 40:60 (5–8), Hex–EtOAc 20:80 (9–12), EtOAc (Sigma-Aldrich catalog). (13), and MeOH (14). On the basis of the analytic TLC, and according The molecular formula of compound 2 (Fig. 1) was deduced as to the antimicrobial assay, similar active fractions 5–8 (0.15 g) C7H6O2 from the deprotonated molecular ion peak at m/z 122.0368 were combined and rechromatographed on the same support using [M − H]− observed in the HRESI-MS compatible with four degrees the same solvent system.
Recommended publications
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • The Macadamia Industry in New Zealand
    Copyright is owned by the Author of the thesis. Pennission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the pennission of the Author. THE MACADAMIA INDUSTRY IN NEW ZEALAND A Thesis for the Degree of Master of Philosophy At Massey University Palmerston North Bernard Coleman Whangarei 2005 ABSTRACT The New Zealand macadamia industry has been characterised by many small plantings, lifestyle blocks up to 1500 trees and two commercial plantations with more than 10000 trees. Completed research programmes have been few, mainly because government funding in horticulture has been channelled to the needs of the major crops such as kiwifruit. Changes in political policy affected funding for minor horticultural crops and spasmodic cuts in finance severely hindered long-term research projects. Because of its small size the macadamia industry had limited funds available from members but some research programmes have been completed including pest control, tree nutrition, basal stain and future research needs. A private consultant, Ian Gordon has carried out variety trials on a local selection. Several selections have been planted in different locations and have proven to be useful in pollination of Beaumont, the main variety planted in New Zealand. Within the limits, set by climatic factors, the suitable growing areas are north of a line from New Plymouth to Gisbome. Both of those areas are marginal for commercial planting but sites on the sheltered north facing positions could grow satisfactory yields. Yields per tree, generally have been below commercial requirements.
    [Show full text]
  • Finding Fynbos of the Western Cape, Via Grootbos
    Finding Fynbos Of The Western Cape, Via Grootbos A Professional & Personal Journey To South Africa September 13th - 21st October 2018 By Victoria Ind !1 Table Of Contents 1………………………Itinerary 2………………………Introduction 3…………………….. Grootbos - My Volunteering - Green Futures Plant Nursery & Farms 4…………………….. Botanising - Grootbos Conservation Team - Hike With Sean Privett - Milkwood Forest - Self-Guided Botanising 5…………………….. Fernkloof Flower Festival 6……………………Garden Visits - Vergelegen - Lourensford - Stellenbosch - Dylan Lewis Sculpture Garden - Kirstenbosch - Green Point Diversity Garden - The Company’s Garden 7…………………… Conclusion 8…………………… Breakdown Of Expenses 9……………………. Appendix & Bibliography 10………………….. Acknowledgments !2 1: ITINERARY 13th-15th September 2018: Travel from Dublin Ireland to Cape Town. x2 nights in Cape Town. 15th September 2018: Collection from Cape Town by Grootbos Foundation, transport to Grootbos staff accommodation, Gansbaai. 16th September-15th October 2018: Volunteer work with Green Futures, a division of the Grootbos Foundation. Mainly based on the Grootbos Nature Reserve & surrounding areas of Gansbaai & Masakhane township. 20-23rd September 2018: Weekend spent in Hermanus, attend Fernkloof Flower Festival. 15th October 2018: Leave Grootbos, travel to Cape Town. 16th October 2018: Visit to Vergelegen 17th October 2018: Visit to Lourensford & Stellenbosch 18th October 2018: Visit to Dylan Lewis Sculpture Garden 19th October 2018: Visit to Kirstenbosch Botanic Garden 20th October 2018: Visit to Green Point Diversity Garden & Company Gardens 21st October 2018: Return to Dublin Ireland. Fig: (i) !3 2: INTRODUCTION When asked as a teenager what I wanted to do with my life I’d have told you I wanted to be outdoors and I wanted to travel. Unfortunately, as life is wont to do, I never quite managed the latter.
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • The Macadamia Industry in New Zealand
    Copyright is owned by the Author of the thesis. Pennission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the pennission of the Author. THE MACADAMIA INDUSTRY IN NEW ZEALAND A Thesis for the Degree of Master of Philosophy At Massey University Palmerston North Bernard Coleman Whangarei 2005 ABSTRACT The New Zealand macadamia industry has been characterised by many small plantings, lifestyle blocks up to 1500 trees and two commercial plantations with more than 10000 trees. Completed research programmes have been few, mainly because government funding in horticulture has been channelled to the needs of the major crops such as kiwifruit. Changes in political policy affected funding for minor horticultural crops and spasmodic cuts in finance severely hindered long-term research projects. Because of its small size the macadamia industry had limited funds available from members but some research programmes have been completed including pest control, tree nutrition, basal stain and future research needs. A private consultant, Ian Gordon has carried out variety trials on a local selection. Several selections have been planted in different locations and have proven to be useful in pollination of Beaumont, the main variety planted in New Zealand. Within the limits, set by climatic factors, the suitable growing areas are north of a line from New Plymouth to Gisbome. Both of those areas are marginal for commercial planting but sites on the sheltered north facing positions could grow satisfactory yields. Yields per tree, generally have been below commercial requirements.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Toronia Toru
    Toronia toru COMMON NAME Toru, toro, toto, mihimihi SYNONYMS Persoonia toru A.Cunn. FAMILY Proteaceae AUTHORITY Toronia toru (A.Cunn.) L.A.S.Johnson et B.G.Briggs FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Yes ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE TORTOR Toronia toru. Photographer: Wayne Bennett CHROMOSOME NUMBER 2n = 28 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small bushy tree with long narrow leathery smooth edged-leaves that are yellowish when young and red when dying. Leaves 16-20cm long by 8-15mm wide, sharp tipped. Flowers yellowish or white, small, in clusters. Fruit dark purple, 12-18mm long. DISTRIBUTION Endemic. North Island from Te Paki south to the mouth of the Waihaha River, on the western side of Lake Taupo. However south of Auckland, toru is mostly found in the east from the Coromandel throughout the Bay Kennedy Bay, November. Photographer: John of Plenty to about Atiamuri. In the western Waikato it is known locally Smith-Dodsworth from the northern end of the Aotea Harbour, near Kawhia (Rakaunui), Te Kauri and Whenuapo in the Taumatatotara Range HABITAT Coastal to montane mostly on infertile soils, in open shrubland (especially gumland), early successional forest and along ridge lines and around slip scars in kauri (Agathis australis) and/or tanekaha (Phyllocladus trichomanoides) dominated forest. It is locally abundant on silicic igneous rocks such as rhyolite, ignimbrite and pumice. FEATURES Small dioecious (or gynodioecious) tree up to 12 m tall; trunk 1 or more arising from base, 0.2-0.3 m dbh; bark firm (not flaking), grey, grey-brown, brown or mottled grey, grey-brown.
    [Show full text]
  • Rates of Molecular Evolution and Diversification in Plants: Chloroplast
    Duchene and Bromham BMC Evolutionary Biology 2013, 13:65 http://www.biomedcentral.com/1471-2148/13/65 RESEARCH ARTICLE Open Access Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae David Duchene* and Lindell Bromham Abstract Background: Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results: Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions: We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation.
    [Show full text]
  • Rife What Seeds Are to the Earth
    1'ou say you donJt 6efieve? Wfiat do you caffit when you sow a tiny seedandare convincedthat a pfant wiffgrow? - Elizabeth York- Contents Abstract . , .. vii Declaration .. ,,., , ,........... .. ix Acknowledgements ,, ,, , .. , x Publications from this Thesis ,, , ", .. ,., , xii Patents from this Thesis ,,,'' ,, .. ',. xii Conference Contributions ' xiii Related Publications .................................................... .. xiv List of Figures , xv List of Tables , ,,,. xviii List of Abbreviations ,,, ,, ,,, ,. xix 1 Introduction ,,,, 1 1.1 SMOKE AS A GERMINATION CUE .. ,,,, .. ,,,,, .. , .. , , . , 1 1.2 AIMS AND OBJECTIVES , '.. , , . 1 1.3 GENERAL OVERVIEW ,, " , .. , .. , 2 2 Literature Review ,",,,,", 4 2.1 THE ROLE OF FIRE IN SEED GERMINATION .. ,,,,.,,,,. ,4 2.1.1 Fire in mediterranean-type regions ', .. ,, , , 4 2,1.2 Post-fire regeneration. ,,,, .. , , . , , , , 5 2,1.3 Effects of fire on germination .,,, , , . 7 2,1,3.1 Physical effects of fire on germination .. ,," .. ,.,. 8 2.1,3.2 Chemical effects of fire on germination ., ,, .. ,., 11 2.2 GERMINATION RESPONSES TO SMOKE., , '" ., , 16 2.2.1 The discovery of smoke as a germination cue, ,,., .. , , .. ,, 16 2.2.2 Studies on South African species. ,.,, .. , ,,,,., 17 2.2,3 Studies on Australian species "",., ,"," ".,." 20 2.2.4 StUdies on species from other regions. , ,,.,, 22 2.2.5 Responses of vegetable seeds ., .. ' .. , ,', , , 23 2.2.6 Responses of weed species .. ,,,.,, 24 2.2.7 General comments and considerations ., .. ,,, .. , .. ,,, 25 2.2.7.1 Concentration effects .. ,", ,., 25 2.2.7.2 Experimental considerations ,,,,,,, 26 2.2,7.3 Physiological and environmental effects ,,, .. ,, 27 2.2.8 The interaction of smoke and heat, ,, ,,,,,,, 29 \ 2.3 SOURCES OF SMOKE ., , .. , .. ,, .. ,., .. ,, 35 2.3,1 Chemical components of smoke ,, .. " ,, 35 iii Contents 2.3.2 Methods of smoke treatments 36 2.3.2.1 Aerosol smoke and smoked media .
    [Show full text]
  • NUMBERED TREE SPECIES LIST in SOUTH AFRICA CYATHEACEAE 1 Cyathea Dregei 2 Cyathea Capensis Var. Capensis ZAMIACEAE 3 Encephalart
    NUMBERED TREE SPECIES LIST IN SOUTH AFRICA 23 Hyphaene coriacea CYATHEACEAE 24 Hyphaene petersiana 1 Cyathea dregei 25 Borassus aethiopum 2 Cyathea capensis var. capensis 26 Raphia australis 27 Jubaeopsis caffra ZAMIACEAE 3 Encephalartos altensteinii ASPHODELACEAE 3.1 Encephalartos eugene-maraisii 28 Aloe barberae 3.2 Encephalartos arenarius 28.1 Aloe arborescens 3.3 Encephalartos brevifoliolatus 28.2 Aloe africana 3.4 Encephalartos ferox 28.3 Aloe alooides 4 Encephalartos friderici-guilielmi 28.4 Aloe angelica 5 Encephalartos ghellinckii 28.5 Aloe candelabrum 5.1 Encephalartos inopinus 28.6 Aloe castanea 5.2 Encephalartos lanatus 28.7 Aloe comosa 6 Encephalartos laevifolius 28.8 Aloe excelsa var. excelsa 7 Encephalartos latifrons 29 Aloe dichotoma 8 Encephalartos senticosus 29.1 Aloe dolomitica 8.1 Encephalartos lehmannii 29.2 Aloe ferox 9 Encephalartos longifolius 29.3 Aloe khamiesensis 10 Encephalartos natalensis 29.4 Aloe littoralis 11 Encephalartos paucidentatus 29.5 Aloe marlothii subsp. marlothii 12 Encephalartos princeps 29.6 Aloe plicatilis 12.5 Encephalartos relictus 29.7 Aloe marlothii subsp. orientalis 13 Encephalartos transvenosus 30 Aloe pillansii 14 Encephalartos woodii 30.1 Aloe pluridens 14.1 Encephalartos heenanii 30.2 Aloe ramosissima 14.2 Encephalartos dyerianus 30.3 Aloe rupestris 14.3 Encephalartos middelburgensis 30.4 Aloe spicata 14.4 Encephalartos dolomiticus 30.5 Aloe speciosa 14.5 Encephalartos aemulans 30.6 Aloe spectabilis 14.6 Encephalartos hirsutus 30.7 Aloe thraskii 14.7 Encephalartos msinganus 14.8 Encephalartos
    [Show full text]
  • Ecology of Proteaceae with Special Reference to the Sydney Region
    951 Ecology of Proteaceae with special reference to the Sydney region P.J. Myerscough, R.J. Whelan and R.A. Bradstock Myerscough, P.J.1, Whelan, R.J.2, and Bradstock, R.A.3 (1Institute of Wildlife Research, School of Biological Sciences (A08), University of Sydney, NSW 2006; 2Department of Biological Sciences, University of Wollongong, NSW 2522; 3Biodiversity Research and Management Division, NSW National Parks & Wildlife Service, PO Box 1967, Hurstville, NSW 1481) Ecology of Proteaceae with special reference to the Sydney region. Cunninghamia 6(4): 951–1015. In Australia, the Proteaceae are a diverse group of plants. They inhabit a wide range of environments, many of which are low in plant resources. They support a wide range of animals and other organisms, and show distinctive patterns of distribution in relation to soils, climate and geological history. These patterns of distribution, relationships with nutrients and other resources, interactions with animals and other organisms and dynamics of populations in Proteaceae are addressed in this review, particularly for the Sydney region. The Sydney region, with its wide range of environments, offers great opportunities for testing general questions in the ecology of the Proteaceae. For instance, its climate is not mediterranean, unlike the Cape region of South Africa, south- western and southern Australia, where much of the research on plants of Proteaceae growing in infertile habitats has been done. The diversity and abundance of Proteaceae vary in the Sydney region inversely with fertility of habitats. In the region’s rainforest there are few Proteaceae and their populations are sparse, whereas in heaths in the region, Proteaceae are often diverse and may dominate the canopy.
    [Show full text]
  • Norrie's Plant Descriptions - Index of Common Names a Key to Finding Plants by Their Common Names (Note: Not All Plants in This Document Have Common Names Listed)
    UC Santa Cruz Arboretum & Botanic Garden Plant Descriptions A little help in finding what you’re looking for - basic information on some of the plants offered for sale in our nursery This guide contains descriptions of some of plants that have been offered for sale at the UC Santa Cruz Arboretum & Botanic Garden. This is an evolving document and may contain errors or omissions. New plants are added to inventory frequently. Many of those are not (yet) included in this collection. Please contact the Arboretum office with any questions or suggestions: [email protected] Contents copyright © 2019, 2020 UC Santa Cruz Arboretum & Botanic Gardens printed 27 February 2020 Norrie's Plant Descriptions - Index of common names A key to finding plants by their common names (Note: not all plants in this document have common names listed) Angel’s Trumpet Brown Boronia Brugmansia sp. Boronia megastigma Aster Boronia megastigma - Dark Maroon Flower Symphyotrichum chilense 'Purple Haze' Bull Banksia Australian Fuchsia Banksia grandis Correa reflexa Banksia grandis - compact coastal form Ball, everlasting, sago flower Bush Anemone Ozothamnus diosmifolius Carpenteria californica Ozothamnus diosmifolius - white flowers Carpenteria californica 'Elizabeth' Barrier Range Wattle California aster Acacia beckleri Corethrogyne filaginifolia - prostrate Bat Faced Cuphea California Fuchsia Cuphea llavea Epilobium 'Hummingbird Suite' Beach Strawberry Epilobium canum 'Silver Select' Fragaria chiloensis 'Aulon' California Pipe Vine Beard Tongue Aristolochia californica Penstemon 'Hidalgo' Cat Thyme Bird’s Nest Banksia Teucrium marum Banksia baxteri Catchfly Black Coral Pea Silene laciniata Kennedia nigricans Catmint Black Sage Nepeta × faassenii 'Blue Wonder' Salvia mellifera 'Terra Seca' Nepeta × faassenii 'Six Hills Giant' Black Sage Chilean Guava Salvia mellifera Ugni molinae Salvia mellifera 'Steve's' Chinquapin Blue Fanflower Chrysolepis chrysophylla var.
    [Show full text]