MTHE/MATH 332 Introduction to Control

Total Page:16

File Type:pdf, Size:1020Kb

MTHE/MATH 332 Introduction to Control 1 Queen’s University Mathematics and Engineering and Mathematics and Statistics MTHE/MATH 332 Introduction to Control (Preliminary) Supplemental Lecture Notes Serdar Yuksel¨ April 3, 2021 2 Contents 1 Introduction ....................................................................................1 1.1 Introduction................................................................................1 1.2 Linearization...............................................................................4 2 Systems ........................................................................................7 2.1 System Properties...........................................................................7 2.2 Linear Systems.............................................................................8 2.2.1 Representation of Discrete-Time Signals in terms of Unit Pulses..............................8 2.2.2 Linear Systems.......................................................................8 2.3 Linear and Time-Invariant (Convolution) Systems................................................9 2.4 Bounded-Input-Bounded-Output (BIBO) Stability of Convolution Systems........................... 11 2.5 The Frequency Response (or Transfer) Function of Linear Time-Invariant Systems..................... 11 2.6 Steady-State vs. Transient Solutions............................................................ 11 2.7 Bode Plots................................................................................. 12 2.8 Interconnections of Systems................................................................... 13 2.9 Feedback Control Systems.................................................................... 13 2.10 State-Space Description of Linear Systems...................................................... 14 2.10.1 Principle of superposition.............................................................. 14 2.10.2 State-space description of input-output systems............................................ 14 2.10.3 Stability of linear systems described by state equations...................................... 15 2.11 Exercises.................................................................................. 15 3 Frequency Domain Analysis of Convolution Systems ................................................ 19 3.1 Transfer Functions for Convolution Systems..................................................... 20 3.2 Bode Plots................................................................................. 21 3.3 Exercises.................................................................................. 21 4 Contents 4 The Laplace and Z-Transformations .............................................................. 25 4.1 Introduction................................................................................ 25 4.1.1 The Two-sided Laplace Transform....................................................... 25 4.1.2 The Two-sided Z-Transform............................................................ 25 4.1.3 The One-sided Laplace Transform....................................................... 26 4.1.4 The One-sided Z-Transform............................................................ 26 4.2 Properties.................................................................................. 26 4.2.1 Linearity............................................................................ 26 4.2.2 Convolution.......................................................................... 26 4.2.3 Shift Property........................................................................ 26 4.2.4 Converse Shift Property................................................................ 27 4.2.5 Differentiation Property (in time domain)................................................. 27 4.2.6 Converse Differentiation............................................................... 27 4.2.7 Scaling.............................................................................. 29 4.2.8 Initial Value Theorem................................................................. 29 4.2.9 Final Value Theorem.................................................................. 29 4.3 Computing the Inverse Transforms............................................................. 30 4.4 Systems Analysis using the Laplace and the Z Transforms......................................... 31 4.5 Causality (Realizability), Stability and Minimum-Phase Systems.................................... 31 4.6 Initial Value Problems using the Laplace and Z Transforms........................................ 32 4.7 Exercises.................................................................................. 32 5 Control Analysis and Design through Frequency Domain Methods ................................... 35 5.1 Transfer Function Shaping through Control: Closed-Loop vs. Open-Loop............................ 35 5.2 Bode-Plot Analysis.......................................................................... 35 5.3 The Root Locus Method...................................................................... 35 5.4 Nyquist Stability Criterion.................................................................... 38 5.4.1 System gain, passivity and the small gain theorem.......................................... 40 5.5 A Common Class of Controllers: PID Controllers................................................ 41 5.6 Exercises.................................................................................. 42 6 Realizability and State Space Representation ....................................................... 43 6.1 Realizations: Controllable, Observable and Modal Forms.......................................... 44 6.1.1 Controllable canonical realization....................................................... 44 6.1.2 Observable canonical realization........................................................ 45 Contents 5 6.1.3 Modal realization..................................................................... 46 6.2 Zero-State Equivalence and Algebraic Equivalence............................................... 47 6.3 Discretization............................................................................... 48 7 Stability and Lyapunov’s Method ................................................................. 49 7.1 Introduction................................................................................ 49 7.2 Stability Criteria............................................................................ 49 7.2.1 Linear Systems....................................................................... 49 7.3 A General Approach: Lyapunov’s Method....................................................... 51 7.3.1 Revisiting the linear case............................................................... 52 7.4 Non-Linear Systems and Linearization.......................................................... 53 7.5 Discrete-time Setup.......................................................................... 55 7.6 Exercises.................................................................................. 56 8 Controllability and Observability ................................................................. 61 8.1 Controllability.............................................................................. 61 8.2 Observability............................................................................... 64 8.3 Feedback and Pole Placement................................................................. 65 8.4 Observers and Observer Feedback............................................................. 66 8.5 Canonical Forms............................................................................ 67 8.6 Using Riccati Equations to Find Stabilizing Linear Controllers [Optional]............................ 68 8.6.1 Controller design via Riccati equations................................................... 68 8.6.2 Observer design via Riccati equations.................................................... 69 8.6.3 Putting controller and observer design together............................................ 69 8.6.4 Continuous-time case.................................................................. 69 8.7 Applications and Exercises................................................................... 70 9 Performance Analysis and Limitations: Robustness, Tracking and Disturbance Rejection ............... 75 9.1 Robustness to Load (System) Noise and Measurement Noise and Internal Stability..................... 75 9.2 Fundamental Limitations and Bode’s Sensitivity Integral........................................... 76 9.3 Feedforward Design......................................................................... 78 A Signal Spaces and Representation of Signals ....................................................... 79 A.1 Normed Linear (Vector) Spaces and Metric Spaces............................................... 79 A.2 Hilbert Spaces.............................................................................. 83 A.3 Why are we interested in Hilbert Spaces?....................................................... 83 6 Contents A.4 Separability................................................................................ 85 A.4.1 Separability and Existence of Basis...................................................... 85 A.4.2 Fourier Series:........................................................................ 87 A.4.3 Approximation:....................................................................... 87 A.4.4 Other expansions:....................................................................
Recommended publications
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Lectures on the Local Semicircle Law for Wigner Matrices
    Lectures on the local semicircle law for Wigner matrices Florent Benaych-Georges∗ Antti Knowlesy September 11, 2018 These notes provide an introduction to the local semicircle law from random matrix theory, as well as some of its applications. We focus on Wigner matrices, Hermitian random matrices with independent upper-triangular entries with zero expectation and constant variance. We state and prove the local semicircle law, which says that the eigenvalue distribution of a Wigner matrix is close to Wigner's semicircle distribution, down to spectral scales containing slightly more than one eigenvalue. This local semicircle law is formulated using the Green function, whose individual entries are controlled by large deviation bounds. We then discuss three applications of the local semicircle law: first, complete delocalization of the eigenvectors, stating that with high probability the eigenvectors are approximately flat; second, rigidity of the eigenvalues, giving large deviation bounds on the locations of the individual eigenvalues; third, a comparison argument for the local eigenvalue statistics in the bulk spectrum, showing that the local eigenvalue statistics of two Wigner matrices coincide provided the first four moments of their entries coincide. We also sketch further applications to eigenvalues near the spectral edge, and to the distribution of eigenvectors. arXiv:1601.04055v4 [math.PR] 10 Sep 2018 ∗Universit´eParis Descartes, MAP5. Email: [email protected]. yETH Z¨urich, Departement Mathematik. Email: [email protected].
    [Show full text]
  • Notes on Allpass, Minimum Phase, and Linear Phase Systems
    DSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSP SignalDSP Processing (18-491 ) Digital DSPDSPDSPDSPDSPDSPDSP/18-691 S pring DSPDSP DSPSemester,DSPDSPDSP 2021 Allpass, Minimum Phase, and Linear Phase Systems I. Introduction In previous lectures we have discussed how the pole and zero locations determine the magnitude and phase of the DTFT of an LSI system. In this brief note we discuss three special cases: allpass, minimum phase, and linear phase systems. II. Allpass systems Consider an LSI system with transfer function z−1 − a∗ H(z) = 1 − az−1 Note that the system above has a pole at z = a and a zero at z = (1=a)∗. This means that if the pole is located at z = rejθ, the zero would be located at z = (1=r)ejθ. These locations are illustrated in the figure below for r = 0:6 and θ = π=4. Im[z] Re[z] As usual, the DTFT is the z-transform evaluated along the unit circle: j! H(e ) = H(z)jz=0 18-491 ZT properties and inverses Page 2 Spring, 2021 It is easy to obtain the squared magnitude of the frequency response by multiplying H(ej!) by its complex conjugate: 2 (e−j! − re−j!)(ej! − rej!) H(ej!) = H(ej!)H∗(ej!) = (1 − rejθe−j!)(1 − re−jθej!) (1 − rej(θ−!) − re−j(θ−!) + r2) = = 1 (1 − rej(θ−!) − re−j(θ−!) + r2) Because the squared magnitude (and hence the magnitude) of the transfer function is a constant independent of frequency, this system is referred to as an allpass system. A sufficient condition for the system to be allpass is for the poles and zeros to appear in \mirror-image" locations as they do in the pole-zero plot on the previous page.
    [Show full text]
  • Semi-Parametric Likelihood Functions for Bivariate Survival Data
    Old Dominion University ODU Digital Commons Mathematics & Statistics Theses & Dissertations Mathematics & Statistics Summer 2010 Semi-Parametric Likelihood Functions for Bivariate Survival Data S. H. Sathish Indika Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds Part of the Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Indika, S. H. S.. "Semi-Parametric Likelihood Functions for Bivariate Survival Data" (2010). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/ jgbf-4g75 https://digitalcommons.odu.edu/mathstat_etds/30 This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. SEMI-PARAMETRIC LIKELIHOOD FUNCTIONS FOR BIVARIATE SURVIVAL DATA by S. H. Sathish Indika BS Mathematics, 1997, University of Colombo MS Mathematics-Statistics, 2002, New Mexico Institute of Mining and Technology MS Mathematical Sciences-Operations Research, 2004, Clemson University MS Computer Science, 2006, College of William and Mary A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS AND STATISTICS OLD DOMINION UNIVERSITY August 2010 Approved by: DayanandiN; Naik Larry D. Le ia M. Jones ABSTRACT SEMI-PARAMETRIC LIKELIHOOD FUNCTIONS FOR BIVARIATE SURVIVAL DATA S. H. Sathish Indika Old Dominion University, 2010 Director: Dr. Norou Diawara Because of the numerous applications, characterization of multivariate survival dis­ tributions is still a growing area of research.
    [Show full text]
  • EECS 451 LECTURE NOTES BASIC SYSTEM PROPERTIES What: Input X[N] → |SYSTEM| → Y[N] Output
    EECS 451 LECTURE NOTES BASIC SYSTEM PROPERTIES What: Input x[n] → |SYSTEM| → y[n] output. Why: Design the system to filter input x[n]. DEF: A system is LINEAR if these two properties hold: 1. Scaling: If x[n] → |SYS| → y[n], then ax[n] → |SYS| → ay[n] for: any constant a. NOT true if a varies with time (i.e., a[n]). 2. Superposition: If x1[n] → |SYS| → y1[n] and x2[n] → |SYS| → y2[n], Then: (ax1[n]+ bx2[n]) → |SYS| → (ay1[n]+ by2[n]) for: any constants a, b. NOT true if a or b vary with time (i.e., a[n], b[n]). EX: y[n]=3x[n−2]; y[n]= x[n+1]−nx[n]+2x[n−1]; y[n] = sin(n)x[n]. NOT: y[n]= x2[n]; y[n] = sin(x[n]); y[n]= |x[n]|; y[n]= x[n]/x[n − 1]. NOT: y[n]= x[n] + 1 (try it). This is called an affine system. HOW: If any nonlinear function of x[n], not linear. Nonlinear of just n OK. DEF: A system is TIME-INVARIANT if this property holds: If x[n] → |SYS| → y[n], then x[n − N] → |SYS| → y[n − N] for: any integer time delay N. NOT true if N varies with time (e.g., N(n)). EX: y[n]=3x[n − 2]; y[n] = sin(x[n]); y[n]= x[n]/x[n − 1]. NOT: y[n]= nx[n]; y[n]= x[n2]; y[n]= x[2n]; y[n]= x[−n]. HOW: If n appears anywhere other than in x[n], not time-invariant.
    [Show full text]
  • Delta Functions and Distributions
    When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on.
    [Show full text]
  • Method for Undershoot-Less Control of Non- Minimum Phase Plants Based on Partial Cancellation of the Non-Minimum Phase Zero: Application to Flexible-Link Robots
    Method for Undershoot-Less Control of Non- Minimum Phase Plants Based on Partial Cancellation of the Non-Minimum Phase Zero: Application to Flexible-Link Robots F. Merrikh-Bayat and F. Bayat Department of Electrical and Computer Engineering University of Zanjan Zanjan, Iran Email: [email protected] , [email protected] Abstract—As a well understood classical fact, non- minimum root-locus method [11], asymptotic LQG theory [9], phase zeros of the process located in a feedback connection waterbed effect phenomena [12], and the LTR problem cannot be cancelled by the corresponding poles of controller [13]. In the field of linear time-invariant (LTI) systems, since such a cancellation leads to internal instability. This the source of all of the above-mentioned limitations is that impossibility of cancellation is the source of many the non-minimum phase zero of the given process cannot limitations in dealing with the feedback control of non- be cancelled by unstable pole of the controller since such a minimum phase processes. The aim of this paper is to study cancellation leads to internal instability [14]. the possibility and usefulness of partial (fractional-order) cancellation of such zeros for undershoot-less control of During the past decades various methods have been non-minimum phase processes. In this method first the non- developed by researchers for the control of processes with minimum phase zero of the process is cancelled to an non-minimum phase zeros (see, for example, [15]-[17] arbitrary degree by the proposed pre-compensator and then and the references therein for more information on this a classical controller is designed to control the series subject).
    [Show full text]
  • Digital Signal Processing Lecture Outline Discrete-Time Systems
    Lecture Outline ESE 531: Digital Signal Processing ! Discrete Time Systems ! LTI Systems ! LTI System Properties Lec 3: January 17, 2017 ! Difference Equations Discrete Time Signals and Systems Penn ESE 531 Spring 2017 - Khanna Penn ESE 531 Spring 2017 - Khanna 2 Discrete Time Systems Discrete-Time Systems Penn ESE 531 Spring 2017 - Khanna 4 System Properties Examples ! Causality ! Causal? Linear? Time-invariant? Memoryless? " y[n] only depends on x[m] for m<=n BIBO Stable? ! Linearity ! Time Shift: " Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs " x[n]y[n =] x[n-m]= x[n − m] " Ax [n]+Bx [n] # Ay [n]+By [n] 1 2 1 2 ! Accumulator: ! Memoryless " y[n] n " y[n] depends only on x[n] y[n] = x[k] ! Time Invariance ∑ k=−∞ " Shifted input results in shifted output " x[n-q] # y[n-q] ! Compressor (M>1): ! BIBO Stability y[n] x[Mn] " A bounded input results in a bounded output (ie. max signal value = exists for output if max ) Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 Non-Linear System Example Spectrum of Speech ! Median Filter " y[n]=MED{x[n-k], …x[n+k]} Speech " Let k=1 " y[n]=MED{x[n-1], x[n], x[n+1]} Corrupted Speech Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Low Pass Filtering Low Pass Filtering Corrupted Speech LP-Filtered Speech Penn ESE 531 Spring 2017 - Khanna 9 Penn ESE 531 Spring 2017 - Khanna 10 Median Filtering LTI Systems Corrupted Speech Med-Filter Speech Penn ESE 531 Spring 2017 - Khanna 11 Penn ESE 531 Spring 2017 - Khanna
    [Show full text]
  • Feed-Forward Compensation of Non-Minimum Phase Systems
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2018 Feed-Forward Compensation of Non-Minimum Phase Systems Venkatesh Dudiki Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Electrical and Computer Engineering Commons Repository Citation Dudiki, Venkatesh, "Feed-Forward Compensation of Non-Minimum Phase Systems" (2018). Browse all Theses and Dissertations. 2200. https://corescholar.libraries.wright.edu/etd_all/2200 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. FEED-FORWARD COMPENSATION OF NON-MINIMUM PHASE SYSTEMS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering by VENKATESH DUDIKI BTECH, SRM University, 2016 2018 Wright State University Wright State University GRADUATE SCHOOL November 30, 2018 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Venkatesh Dudiki ENTITLED FEED-FORWARD COMPENSATION OF NON-MINIMUM PHASE SYSTEMS BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Electrical En- gineering. Pradeep Misra, Ph.D. THESIS Director Brian Rigling, Ph.D. Chair Department of Electrical Engineering College of Engineering and Computer Science Committee on Final Examination Pradeep Misra, Ph.D. Luther Palmer,III, Ph.D. Kazimierczuk Marian K, Ph.D Barry Milligan, Ph.D Interim Dean of the Graduate School ABSTRACT Dudiki, Venkatesh.
    [Show full text]
  • Computational Methods in Nonlinear Physics 1. Review of Probability and Statistics
    Computational Methods in Nonlinear Physics 1. Review of probability and statistics P.I. Hurtado Departamento de Electromagnetismo y F´ısicade la Materia, and Instituto Carlos I de F´ısica Te´oricay Computacional. Universidad de Granada. E-18071 Granada. Spain E-mail: [email protected] Abstract. These notes correspond to the first part (20 hours) of a course on Computational Methods in Nonlinear Physics within the Master on Physics and Mathematics (FisyMat) of University of Granada. In this first chapter we review some concepts of probability theory and stochastic processes. Keywords: Computational physics, probability and statistics, Monte Carlo methods, stochastic differential equations, Langevin equation, Fokker-Planck equation, molecular dynamics. References and sources [1] R. Toral and P. Collet, Stochastic Numerical Methods, Wiley (2014). [2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press (2002). [3] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier (2007). [4] Wikipedia: https://en.wikipedia.org CONTENTS 2 Contents 1 The probability space4 1.1 The σ-algebra of events....................................5 1.2 Probability measures and Kolmogorov axioms........................6 1.3 Conditional probabilities and statistical independence....................8 2 Random variables9 2.1 Definition of random variables................................. 10 3 Average values, moments and characteristic function 15 4 Some Important Probability Distributions 18 4.1 Bernuilli distribution.....................................
    [Show full text]
  • EE 225A Digital Signal Processing Supplementary Material 1. Allpass
    EE 225A — DIGITAL SIGNAL PROCESSING — SUPPLEMENTARY MATERIAL 1 EE 225a Digital Signal Processing Supplementary Material 1. Allpass Sequences A sequence ha()n is said to be allpass if it has a DTFT that satisfies jw Ha()e = 1 . (1) Note that this is true iff jw * jw Ha()e Ha()e = 1 (2) which in turn is true iff * ha()n *ha(–n)d= ()n (3) which in turn is true iff * 1 H ()z H æö---- = 1. (4) a aèø* z For rational Z transforms, the latter relation implies that poles (and zeros) of Ha()z are cancelled * 1 * 1 by zeros (and poles) of H æö---- . In other words, if H ()z has a pole at zc= , then H æö---- must aèø a aèø z* z* have have a zero at the same zc= , in order for (4) to be possible. Note further that a zero of * 1 1 H æö---- at zc= is a zero of H ()z at z = ----- . Consequently, (4) implies that poles (and zeros) aèø a z* c* PROF. EDWARD A. LEE, DEPARTMENT OF EECS, UNIVERSITY OF CALIFORNIA, BERKELEY EE 225A — DIGITAL SIGNAL PROCESSING — SUPPLEMENTARY MATERIAL 2 have zeros (and poles) in conjugate-reciprocal locations, as shown below: 1/c* c Intuitively, since the DTFT is the Z transform evaluated on the unit circle, the effect on the mag- nitude due to any pole will be canceled by the effect on the magnitude of the corresponding zero. Although allpass implies conjugate-reciprocal pole-zero pairs, the converse is not necessarily true unless the appropriate constant multiplier is selected to get unity magnitude.
    [Show full text]
  • En-Sci-175-01
    UNCLASSIFIED/UNLIMITED Performance Limits in Control with Application to Communication Constrained UAV Systems Prof. Dr. Richard H. Middleton ARC Centre for Complex Dynamic Systems and Control The University of Newcastle, Callaghan NSW, Australia, 2308 [email protected] ABSTRACT The study of performance limitations in feedback control systems has a long history, commencing with Bode’s gain-phase and sensitivity integral formulae. This area of research focuses on questions of what aspects of closed loop performance can we reasonably demand, and what are the trade-offs or costs of achieving this performance. In particular, it considers concepts related to the inherent costs of stabilisation, limitations due to ‘non-minimum phase’ behaviour, time delays, bandwidth limitations etc. There are a range of results developed in the 90’s for multivariable linear systems, together with extensions to sampled data, non-linear systems. More recently, this work has been extended to consider communication limitations, such as bit-rate or signal to noise ratio limitations and quantization effects. This paper presents: (i) A review of work on performance limitations, including recent results; (ii) Results on impacts of communication constraints on feedback control performance; and (iii) Implications of these results on control of distributed UAVs in formation. 1.0 INTRODUCTION In many control applications it is crucial that the factors limiting the performance of the system are identified. For example, closed loop control performance may be limited due to the fact that the actuators are too slow, or too inaccurate (perhaps due to complex nonlinear effects, such as backlash and hysteresis), to support the desired objectives.
    [Show full text]