MTHE/MATH 332 Introduction to Control

MTHE/MATH 332 Introduction to Control

1 Queen’s University Mathematics and Engineering and Mathematics and Statistics MTHE/MATH 332 Introduction to Control (Preliminary) Supplemental Lecture Notes Serdar Yuksel¨ April 3, 2021 2 Contents 1 Introduction ....................................................................................1 1.1 Introduction................................................................................1 1.2 Linearization...............................................................................4 2 Systems ........................................................................................7 2.1 System Properties...........................................................................7 2.2 Linear Systems.............................................................................8 2.2.1 Representation of Discrete-Time Signals in terms of Unit Pulses..............................8 2.2.2 Linear Systems.......................................................................8 2.3 Linear and Time-Invariant (Convolution) Systems................................................9 2.4 Bounded-Input-Bounded-Output (BIBO) Stability of Convolution Systems........................... 11 2.5 The Frequency Response (or Transfer) Function of Linear Time-Invariant Systems..................... 11 2.6 Steady-State vs. Transient Solutions............................................................ 11 2.7 Bode Plots................................................................................. 12 2.8 Interconnections of Systems................................................................... 13 2.9 Feedback Control Systems.................................................................... 13 2.10 State-Space Description of Linear Systems...................................................... 14 2.10.1 Principle of superposition.............................................................. 14 2.10.2 State-space description of input-output systems............................................ 14 2.10.3 Stability of linear systems described by state equations...................................... 15 2.11 Exercises.................................................................................. 15 3 Frequency Domain Analysis of Convolution Systems ................................................ 19 3.1 Transfer Functions for Convolution Systems..................................................... 20 3.2 Bode Plots................................................................................. 21 3.3 Exercises.................................................................................. 21 4 Contents 4 The Laplace and Z-Transformations .............................................................. 25 4.1 Introduction................................................................................ 25 4.1.1 The Two-sided Laplace Transform....................................................... 25 4.1.2 The Two-sided Z-Transform............................................................ 25 4.1.3 The One-sided Laplace Transform....................................................... 26 4.1.4 The One-sided Z-Transform............................................................ 26 4.2 Properties.................................................................................. 26 4.2.1 Linearity............................................................................ 26 4.2.2 Convolution.......................................................................... 26 4.2.3 Shift Property........................................................................ 26 4.2.4 Converse Shift Property................................................................ 27 4.2.5 Differentiation Property (in time domain)................................................. 27 4.2.6 Converse Differentiation............................................................... 27 4.2.7 Scaling.............................................................................. 29 4.2.8 Initial Value Theorem................................................................. 29 4.2.9 Final Value Theorem.................................................................. 29 4.3 Computing the Inverse Transforms............................................................. 30 4.4 Systems Analysis using the Laplace and the Z Transforms......................................... 31 4.5 Causality (Realizability), Stability and Minimum-Phase Systems.................................... 31 4.6 Initial Value Problems using the Laplace and Z Transforms........................................ 32 4.7 Exercises.................................................................................. 32 5 Control Analysis and Design through Frequency Domain Methods ................................... 35 5.1 Transfer Function Shaping through Control: Closed-Loop vs. Open-Loop............................ 35 5.2 Bode-Plot Analysis.......................................................................... 35 5.3 The Root Locus Method...................................................................... 35 5.4 Nyquist Stability Criterion.................................................................... 38 5.4.1 System gain, passivity and the small gain theorem.......................................... 40 5.5 A Common Class of Controllers: PID Controllers................................................ 41 5.6 Exercises.................................................................................. 42 6 Realizability and State Space Representation ....................................................... 43 6.1 Realizations: Controllable, Observable and Modal Forms.......................................... 44 6.1.1 Controllable canonical realization....................................................... 44 6.1.2 Observable canonical realization........................................................ 45 Contents 5 6.1.3 Modal realization..................................................................... 46 6.2 Zero-State Equivalence and Algebraic Equivalence............................................... 47 6.3 Discretization............................................................................... 48 7 Stability and Lyapunov’s Method ................................................................. 49 7.1 Introduction................................................................................ 49 7.2 Stability Criteria............................................................................ 49 7.2.1 Linear Systems....................................................................... 49 7.3 A General Approach: Lyapunov’s Method....................................................... 51 7.3.1 Revisiting the linear case............................................................... 52 7.4 Non-Linear Systems and Linearization.......................................................... 53 7.5 Discrete-time Setup.......................................................................... 55 7.6 Exercises.................................................................................. 56 8 Controllability and Observability ................................................................. 61 8.1 Controllability.............................................................................. 61 8.2 Observability............................................................................... 64 8.3 Feedback and Pole Placement................................................................. 65 8.4 Observers and Observer Feedback............................................................. 66 8.5 Canonical Forms............................................................................ 67 8.6 Using Riccati Equations to Find Stabilizing Linear Controllers [Optional]............................ 68 8.6.1 Controller design via Riccati equations................................................... 68 8.6.2 Observer design via Riccati equations.................................................... 69 8.6.3 Putting controller and observer design together............................................ 69 8.6.4 Continuous-time case.................................................................. 69 8.7 Applications and Exercises................................................................... 70 9 Performance Analysis and Limitations: Robustness, Tracking and Disturbance Rejection ............... 75 9.1 Robustness to Load (System) Noise and Measurement Noise and Internal Stability..................... 75 9.2 Fundamental Limitations and Bode’s Sensitivity Integral........................................... 76 9.3 Feedforward Design......................................................................... 78 A Signal Spaces and Representation of Signals ....................................................... 79 A.1 Normed Linear (Vector) Spaces and Metric Spaces............................................... 79 A.2 Hilbert Spaces.............................................................................. 83 A.3 Why are we interested in Hilbert Spaces?....................................................... 83 6 Contents A.4 Separability................................................................................ 85 A.4.1 Separability and Existence of Basis...................................................... 85 A.4.2 Fourier Series:........................................................................ 87 A.4.3 Approximation:....................................................................... 87 A.4.4 Other expansions:....................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    132 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us