Medical Assessment of Drug Induced Rhabdomyolysis and Metabolic Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Medical Assessment of Drug Induced Rhabdomyolysis and Metabolic Disorders ISoP Training Course- Zagreb, 3-4 April 2014 Medical assessment of drug induced rhabdomyolysis and metabolic disorders Marco Tuccori, ISoP EC member Unit of Adverse Drug Reacon Monitoring University Hospital of Pisa, Pisa, Italy At the forefront of pharmacovigilance around the world 1 ISoP training course Zagreb 3-4 April 2014 Proacve Pharmacovigilance, Risk Management and Pharmacovigilance in the Era of Personalised Medicine All presentaons provided as PDF files are protected by copyright. Prinng and storage is for scholarly research, educaonal and personal use only. Any copyright or other noces or disclaimers must not be removed, obscured or modified. If used for training the original source must be properly credited. Copying and make copies of the PDF presentaons (including through e-mail) are not permied. The PDF files must not be posted on an open- access website. At the forefront of pharmacovigilance around the world 2 Summary • Metabolic adverse reactions • Muscular adverse reactions • Definitions and classifications • Signs and symptoms • Main (alternative) causes • Drugs most frequently involved • Biological plausibility • Drug-induced lipids metabolism alterations • Drug-induced glucose metabolism alterations At the forefront of pharmacovigilance around the world 3 Metabolic Adverse Reacons Metabolism is the set of life-sustain- ing chemical transformations within the cells of living organisms. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, ? and respond to their environments. DRUGS Lipids Myopathies Carbohydrates At the forefront of pharmacovigilance around the world 4 Muscular adverse events Definions and Classificaons Term ACC/AHA/NHLBI NLA FDA Myopathy Any disease of the Symptoms of myalgia (muscle CK > 10 ULN muscle pain or soreness), weakness. Or cramps, plus CK > 10 ULN Myalgia Muscle aches or NA NA weakness without CK elevaon Myosiss Muscle symptoms with NA NA increased CK Rhabdomyolysis Muscle symptoms CK > 10.000 IU/L or CK > 10 ULN CK > 50 ULN, associated with marked plus elevaon in serum creane evidence of organ CK elevaons, pically > or medical intervenon with iv damage, such as renal 10 ULN hydraon compromise ACC/AHA/NHLBI: American College of cardiology/American Heart Associaon/Naonal Heart, Lung and Blood Instute; NLA: Naonal Lung Associaon; FDA: Food and Drug Administraon; NA: not available, ULN: upper limit of normal; CK: crean kinase Joy TR, Hegele RA. Ann Intern Med 2009; 150:858-868 5 Muscular adverse events Mechanisms Myocytes ++ Ca RYR SR ATP ++ Ca++ Ca++ Ca Na+ Na+ Potassium ATP ATP Aldolase + + K K Phosphate ATP Depleon Myoglobin CK Myocytes LDH AST Proteolytic Cell breaks ++ Ca enzyme down activation KIDNEY IMPAIRMENTS Keltz E et al., Musc Lig Ten J 2013;3:303-312 6 Rhabdomyolysis Signs and symptoms Clinical presentation Classic triad: muscle aches, weakness, tea coloured urine Other symptoms: muscular tenderness, swelling, cramps, stiffness Most common muscle groups involved: lower back, thighs and calves Physical examination: limb induration, skin changes due to ischemic damage (not always present) Definitive diagnosis: CK elevations and urine myoglobin At the forefront of pharmacovigilance around the world 7 Creane kinase Creatine kinase (CK), or creatine phosphokinase (CPK) catalyses the conversion of creatine and consumes ATP to create phospocreatine (PCr) and ADP. In tissues and cells that consume ATP rapidly, especially skeletal muscle, PCr serves as an energy reservoir for the rapid buffering and regeneration of ATP in situ. Thus, CK is much expressed in such tissues. Serum CK is the most sensitive indicator of muscle damage. Serum CK begin to rise approximately 2-12 hours after the onset of muscle injury, peaks within 24-72 hours and declines gradually in 7-10 days. At the forefront of pharmacovigilance around the world 8 Myoglobin Myoglobin Plasma globulins Muscle damage 0-0.003 mg/dL Blood Urine 100g of muscle 0.5-1.5 mg/dL tissue degraded Elevated serum myoglobin and myoglobinuria are reliable indicators for rhabdomyolysis but present some limitations: 1) Serum myoglobin levels rise and drop much faster than CK levels (1-6 hours), thus have a low negative predictive value and may not be used as a ruling out test. 2) Myoglobinuria is not always visible or may resolved early (100 mg/dL to cause dark urine). 3) Urine dipstick test also react with the globin fargment of hemoglobin (non specific test) At the forefront of pharmacovigilance around the world 9 Rhabdomyolysis: main causes 1) Increased energy demand Es. Exercise (extreme), Heat stroke, Seizures 2) Decreased energy production Es. Metabolic enzymes deficit, mitochondrial dyfunctions, hypokalemia 3) Direct muscle injuries Es. Crush injury, compartment syndrome, electrical injury, 3°degree burns, temeprature extreme (hyper or hypothermia) 4) Decreased oxygen delivery ES. Arterial thrombus, surgery, prolonged immobilization, trauma, shock 5)Infections 6)Endocrine abnormalities Es. Diabetic keto-acidosis, Addison’s disease, hypo/hyperthyroidsm 7) Toxins (carbon mono-oxide, venoms of snake; spider; wasp) 8) Drugs Es. Substance abuse, barbiturates, benzodiazepins, anaesthetics, neuroleptics, anabolic/corticosteroids, statin/fibrates At the forefront of pharmacovigilance around the world 10 Stans USA TODAY.COM 08/08/2001 Statins: estimate incidence of fatal Updated 12:41 PM ET rhabdomyolysis per milion FDA statement on Baycol withdrawal prescriptions (FDA data) FDA today announced that Bayer Drug Incidence Pharmaceutical Division is voluntarily Cerivastatin 3.16 withdrawing Baycol (cerivastatin) from the Lovastatin 0.19 U.S. market because of reports of sometimes fatal rhabdomyolysis (52 Simvastatin 0.12 cases), a severe muscle adverse reaction Atorvastatin 0.04 from this cholesterol-lowering (lipid- Pravastatin 0.04 lowering) product. The FDA agrees with Fluvastatin 0.00 and supports this decision. Staffa JA et al. N Engl J Med 346, 539, 2002 Risk factors: gender (female), age, Thompson PD et al. JAMA 289, 1681, 2003 concomitant disease (renal and hepatic failure), interactions At the forefront of pharmacovigilance around the world 11 Stans Mechanisms of myopathy (1) Cholesterol reduction in the sarcolemma Statins Mechanic Stress Cholesterol is Cholesterol reduction Membrane weakening important for the in the sarcolemma and rupture maintenance of the integrity of cell Cholesterol membranes Phospholipids Staffa JA et al. N Engl J Med 346, 539, 2002 Bhardwaj S et al., Clin Interven Aging 2013;8:47-59 At the forefront of pharmacovigilance around the world 12 Stans Mechanisms of myopathy (2) Acetyl-CoA HMG-CoA Mevalonate Mevalonate-phyrophosphate Statins HMG-CoA-reductase (-) Isopentenyl-phyrophosphate Lack of prenylation of RabGTPase is Geranyil-phyrophosphate associated with Reduced prenylation vacuolization of muscular of structural and fibers in rat models functional proteins Farnesyl-phyrophosphate (apoptosis) (Sakamoto, 2007) Inhibition of Coenzime Q10 Squalene Lack of ATP formation syntesis and impairment of (energy deficit) the mithocondrial (Marcoff, 2007) respiratory chain Cholesterol Marcoff L et al. J Am Coll Cardiol 49, 2231, 2007 Sakamoto K et al. FASEB J, 21, 4087, 2007 At the forefront of pharmacovigilance around the world Stans Interacons Drug Metabolism Drugs enhancing the risk of myopathy with statins Lovastatin CYP3A4 CYP3A4* inhibitors Simvastatin CYP3A4 CYP3A4* inhibitors Pravastatin Sulphatation - Fluvastatin CYP2C9 (CYP2C8 e CYP3A4) CYP2C9° inhibitors Atorvastatin CYP3A4 CYP3A4* inhibitors Rosuvastatin Limited involvement (10%) of - CYP2C9 and CYP2C19 *Cyclosporin, gemfibrozil, fibrates, azole antimycotics, macrolides antibiotics, protease inhibitors (anti-HIV), grapefruit juice; °Azole antimycotics, protease inhibitors (ritonavir) Armitage J. Lancet 370, 1781, 2007 At the forefront of pharmacovigilance around the world 14 Other drugs Proton Pump Inhibitors Ann Pharmacotherapy 2006;40(2): 352-353 Acute severe myopathy following a single infusion of omeprazole. Tuccori M, Giovannoni S, Giustini SE, Blandizzi C, Del Tacca M. Trazodone Omeprazole Ramipril HCZ Aspirin At the forefront of pharmacovigilance around the world 15 Other drugs Proton Pump Inhibitors Eur J Clin Pharmacol. 2006 Jun;62(6):473-9. Myopathy including polymyositis: a likely class adverse effect of proton pump inhibitors? Clark DW1, Strandell J. 292 reports of various myopathies with PPIs (868 cases of 'myalgia‘ were excluded) Positive dechallenge: 69 patients Positive rechallenge: 5 patients (1 case of a cross reaction with 3 different PPIs) 33% of reports a PPI was the only administered drug Myositis or polymiositis: 27 patients Rhabdomyolisis: 35 patients (9 positive dechallenge) Time to onset of rhabdomyolisis (n = 17): within 1 week (n = 9); 2-12 weeks (n = 3) Cross-sectional slice of human skeletal muscle showing acute muscle fiber In 12 cases of rhabdomyolisis, a statin was taken necrosis (hematoxylin and eosin stain; concomitantly × 400 original magnification). At the forefront of pharmacovigilance around the world 16 Rhabdomyolysis Syndromes Malignant hyperthermia Ryanodine Receptor ALOTANE Exon 44 Massive (anesthetic gases) Gene RyR1 intracellular ++ Rhabdomyolysis Mutation Mutation Ca Ala2350Thr Arg2355Trp HALOPERIDOL release Mutation (Neuroleptic drugs) Gly2355Ala Neuroleptic malignant syndrome At the forefront of pharmacovigilance around the world 17 Other drugs Gabapenn Ann Pharmacotherapy 2007;41(7):1301-5. Gabapentin-induced severe myopathy Tuccori M, Lombardo G, Lapi F, Vannacci
Recommended publications
  • Ketones, Urine
    Lab Dept: Urine/Stool Test Name: KETONES, URINE General Information Lab Order Codes: UKE Synonyms: Urine Ketones; Nitroprusside Reaction for Ketones CPT Codes: 81003 – Urinalysis, by dipstick; automated, without microscopy Test Includes: Screen for urine ketones. Logistics Test Indications: Useful for evaluation of ketonuria, detection of acidosis, ketoacidosis, fasting, starvation, high protein diets, diabetes mellitus, and stress- hormone excess. Lab Testing Sections: Urinalysis Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Daily, 24 hours Turnaround Time: 1 hour Special Instructions: Submit only one (1) of the following: Catheterized specimen or clean- catch specimen. Note: Indicate type of specimen (catheterized) on request form. Date and time of collection are required on request form for processing. Transport specimen to laboratory immediately following collection Specimen Specimen Type: Urine Container: Urine cup Draw Volume: Entire specimen collection (catheter or clean catch) Processed Volume: Minimum: 0.5 mL urine Collection: A specimen collected by catheterization is optimal; however, a clean- catch or mid-stream specimen is also acceptable. Random, voided specimens will be accepted, but are the least desirable and are not recommended if a urine culture is also being requested. Special Processing: N/A Patient Preparation: None Sample Rejection: Less than 0.5 mL urine submitted; mislabeled or unlabeled specimen Interpretive Reference Range: Negative Critical Values: N/A Limitations: Specimens containing
    [Show full text]
  • Different Response of Body Weight Change According to Ketonuria After Fasting in the Healthy Obese
    ORIGINAL ARTICLE Endocrinology, Nutrition & Metabolism http://dx.doi.org/10.3346/jkms.2012.27.3.250 • J Korean Med Sci 2012; 27: 250-254 Different Response of Body Weight Change According to Ketonuria after Fasting in the Healthy Obese Hyeon-Jeong Kim1, Nam-Seok Joo1, The relationship between obesity and ketonuria is not well-established. We conducted a Kwang-Min Kim1, Duck-Joo Lee1, retrospective observational study to evaluate whether their body weight reduction response and Sang-Man Kim2 differed by the presence of ketonuria after fasting in the healthy obese. We used the data of 42 subjects, who had medical records of initial urinalysis at routine health check-up and 1Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon; follow-up urinalysis in the out-patient clinic, one week later. All subjects in the initial 2Department of Family Medicine, CHA Biomedical urinalysis showed no ketonuria. However, according to the follow-up urinalysis after three Center, CHA University College of Medicine, Seoul, subsequent meals fasts, the patients were divided into a non-ketonuria group and Korea ketonuria group. We compared the data of conventional low-calorie diet programs for ± Received: 20 August 2011 3 months for both groups. Significantly greater reduction of body weight (-8.6 3.6 kg vs 2 2 Accepted: 17 January 2012 -1.1 ± 2.2 kg, P < 0.001), body mass index (-3.16 ± 1.25 kg/m vs -0.43 ± 0.86 kg/m , P < 0.001) and waist circumference (-6.92 ± 1.22 vs -2.32 ± 1.01, P < 0.001) was Address for Correspondence: observed in the ketonuria group compared to the non-ketonuria group.
    [Show full text]
  • Deficient Diabetic Mice
    Diminished Loss of Proteoglycans and Lack of Albuminuria in Protein Kinase C-␣–Deficient Diabetic Mice Jan Menne,1,2 Joon-Keun Park,2 Martin Boehne,2 Marlies Elger,2 Carsten Lindschau,2 Torsten Kirsch,2 Matthias Meier,2 Faikah Gueler,2 Annette Fiebeler,3 Ferdinand H. Bahlmann,2 Michael Leitges,4 and Hermann Haller2 Activation of protein kinase C (PKC) isoforms has been implicated in the pathogenesis of diabetic nephropathy. We showed earlier that PKC-␣ is activated in the kid- iabetes affects Ͼ300 million people worldwide; -neys of hyperglycemic animals. We now used PKC-␣؊/؊ 20–40% will develop overt nephropathy. Diabe mice to test the hypothesis that this PKC isoform tes is the most common cause of end-stage mediates streptozotocin-induced diabetic nephropathy. Drenal disease. The earliest clinical sign of ne- We observed that renal and glomerular hypertrophy was phropathy is microalbuminuria. Microalbuminuria also ؊ ؊ similar in diabetic wild-type and PKC-␣ / mice. How- heralds impending cardiovascular morbidity and mortality ever, the development of albuminuria was almost absent (1–4). Microalbuminuria predicts overt proteinuria, which ؊/؊␣ in the diabetic PKC- mice. The hyperglycemia-in- is now believed to actively promote renal insufficiency (5). duced downregulation of the negatively charged base- Therefore, successful treatment of diabetic patients ment membrane heparan sulfate proteoglycan perlecan -؊ ؊ should aim for the prevention or regression of albumin was completely prevented in the PKC-␣ / mice, com- pared with controls. We then asked whether transform- uria. Hyperglycemia seems to cause microalbuminuria in ␤ ␤ diabetic patients (6,7). However, how the metabolic dis- ing growth factor- 1 (TGF- 1) and/or vascular endothelial growth factor (VEGF) is implicated in the turbance causes cellular effects is incompletely under- PKC-␣–mediated changes in the basement membrane.
    [Show full text]
  • Ideal Conditions for Urine Sample Handling, and Potential in Vitro Artifacts Associated with Urine Storage
    Urinalysis Made Easy: The Complete Urinalysis with Images from a Fully Automated Analyzer A. Rick Alleman, DVM, PhD, DABVP, DACVP Lighthouse Veterinary Consultants, LLC Gainesville, FL Ideal conditions for urine sample handling, and potential in vitro artifacts associated with urine storage 1) Potential artifacts associated with refrigeration: a) In vitro crystal formation (especially, calcium oxalate dihydrate) that increases with the duration of storage i) When clinically significant crystalluria is suspected, it is best to confirm the finding with a freshly collected urine sample that has not been refrigerated and which is analyzed within 60 minutes of collection b) A cold urine sample may inhibit enzymatic reactions in the dipstick (e.g. glucose), leading to falsely decreased results. c) The specific gravity of cold urine may be falsely increased, because cold urine is denser than room temperature urine. 2) Potential artifacts associated with prolonged storage at room temperature, and their effects: a) Bacterial overgrowth can cause: i) Increased urine turbidity ii) Altered pH (1) Increased pH, if urease-producing bacteria are present (2) Decreased pH, if bacteria use glucose to form acidic metabolites iii) Decreased concentration of chemicals that may be metabolized by bacteria (e.g. glucose, ketones) iv) Increased number of bacteria in urine sediment v) Altered urine culture results b) Increased urine pH, which may occur due to loss of carbon dioxide or bacterial overgrowth, can cause: i) False positive dipstick protein reaction ii) Degeneration of cells and casts iii) Alter the type and amount of crystals present 3) Other potential artifacts: a) Evaporative loss of volatile substances (e.g.
    [Show full text]
  • KETON.Zemia and KETONURIA in CHILDHOOD. by MURIEL J
    Arch Dis Child: first published as 10.1136/adc.1.5.302 on 1 January 1926. Downloaded from KETON.zEMIA AND KETONURIA IN CHILDHOOD. BY MURIEL J. BROWN, M.B., Ch.B., D.P.H., AND GRACE GRAHAMI, AM.D. From the Medical Department, The Royal Hospital for Sick Children, Glasgow. The formation of ketone bodies and their excretion in the urine in albnormall amounts have for many years been problems of much interest to both physiologist and clinician. Much of our present knowledge of the subject has been gained from the study of carbohydrate metabolism in diabetes, where ketonuria in its classical formi is frequently observed. From this it has been established that an excess of ketone bodies occurs in the blood when the fats are incompletely ' combusted ' as a result of abnormal carbohydrate metabolism, and ample justification has been provided for the well-known sta.tement myiade by Rosenfeld(l) in 1895 ' that fat burns only in the fire of carbohydrate.' A good review of our present knowledge of ketone production and its prevention is to be found in Shaffer's recent lecture entitled ' Antiketo- genesis, its Mechanism and Signifiecance. '(2) A fu-ll discussion of the stubject in all its aspects is not within the scope of the present communication, but we may quote that ' there no Shaffer's statement is to-day question that http://adc.bmj.com/ ketosis is due to carbohydrate starvation,' and make special reference also to his remninder that the inhibitory effect of carbohydrate on ketone formation depends, not on the mnere existence of sufficient glucose, as glucose, in the blood (cf.
    [Show full text]
  • Asymptomatic Bacteriuria and Anti-Microbial Susceptibility Patterns Among Women of Reproductive Age
    Article Asymptomatic Bacteriuria and Anti-Microbial Susceptibility Patterns among Women of Reproductive Age. A Cross-Sectional Study in Primary Care, Ghana Prince Afoakwa 1, Seth Agyei Domfeh 1, Bright Oppong Afranie 2,*, Dorcas Ohui Owusu 1, Sampson Donkor 2, Kennedy Kormla Sakyi 3, Richard Akesse Adom 3, Godfred Kyeremeh 1, Bright Afranie Okyere 4, Emmanuel Acheampong 2 and Beatrice Amoah 2 1 Department of Medical Laboratory Technology, Faculty of Health and Allied Sciences, Garden City University College, P.O. Box KS 12775, Kenyasi-Kumasi, Ghana; [email protected] (P.A.); [email protected] (S.A.D.); [email protected] (D.O.O.); [email protected] (G.K.) 2 Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana; [email protected] (S.D.); [email protected] (E.A.); [email protected] (B.A.) 3 Department of Microbiology, Tetteh Quarshie memorial hospital, Akuapem Mampong-Korforidua, P.O. Box 26, Ghana; [email protected] (K.K.S.); [email protected] (R.A.A.) 4 Department of Theoretical and Applied Biology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana; [email protected] * Correspondence: [email protected]; Tel.: +233-246149286 Received: 2 November 2018; Accepted: 12 December 2018; Published: 17 December 2018 Abstract: Background: Asymptomatic bacteriuria (ASB) poses serious future clinical repercussions for reproductive women. The study determined the prevalence of asymptomatic bacteriuria along with anti-microbial susceptibility patterns among women of reproductive age in a primary care facility. Method: The study recruited a total of 300 women of reproductive age attending the Tetteh Quarshie Memorial Hospital at Akuapem-Mampong, Ghana, between January and March 2018.
    [Show full text]
  • Plasma 'Ketone' Levelin the Diagnosis and Treatment of Diabetic Acidosis
    Postgrad. med. J. (October 1968) 44, 799-802. Postgrad Med J: first published as 10.1136/pgmj.44.516.799 on 1 October 1968. Downloaded from Plasma 'ketone' level in the diagnosis and treatment of diabetic acidosis M. S. KNAPP MARGARET E. HORN M.D., M.R.C.P. M.B., M.R.C.P. Lecturer in Medicine, University ofBristol Medical Registrar, Bristol Royal Hospital All patients in possible diabetic acidosis admit- Summary ted to one of the medical firms at the Bristol A simple method of estimating the plasma Royal Infirmary over a 3-year period had an 'ketone' level with 'Acetest' tablets has been used estimation of the plasma 'ketone' level performed in the diagnosis and treatment of diabetic acid- by the clinical staff in the ward side-room. In osis. The method is valuable when used in those patients treated for a moderate or severe association with full biochemical facilities, but it diabetic keto-acidosis the estimation was is especially useful in situations where these can- repeated, usually every four hours. The second not be easily obtained. and subsequent doses of insulin were based to a considerable extent on the plasma 'ketone' titre. Introduction If the titre had not fallen or had risen, an in- In a patient suspected of having diabetic keto- creased dose of insulin was given. A fall in titre acidosis it is useful to be able to rapidly confirm indicated a satisfactory response and either a Protected by copyright. the diagnosis. In this situation we have used a similar dose or a smaller one was used, depending simple side-room method for the detection of on previous blood sugar results.
    [Show full text]
  • Urinary Albumin Excretion Rate Is Associated with Increased Ambulatory Blood Pressure in Normoalbuminuric Type 2 Diabetic Patients
    Pathophysiology/Complications ORIGINAL ARTICLE Urinary Albumin Excretion Rate Is Associated With Increased Ambulatory Blood Pressure in Normoalbuminuric Type 2 Diabetic Patients 1 1 CRISTIANE B. LEITAO˜ , MD MARCEL P. MOLON emerging evidence that patients with dia- 1 2 LU´IS H. CANANI, MD ANTONIOˆ F. PINOTTI, MD betes in the high-normal range of UAER 1 1 PATR´ICIA B. POLSON JORGE L. GROSS, MD are already at high risk for progressing to microalbuminuria or even more ad- vanced stages of renal disease (6–9). Arterial hypertension follows the es- tablishment of microalbuminuria in pa- OBJECTIVE — To evaluate the 24-h blood pressure profile in normoalbuminuric type 2 tients with type 1 diabetes (10). In type 2 diabetic patients. diabetes, this relationship is not that clear because hypertension is a common fea- RESEARCH DESIGN AND METHODS — A cross-sectional study was conducted in 90 type 2 diabetic patients with a urinary albumin excretion rate (UAER) Ͻ20 ␮g/min on two ture in these patients, regardless of renal occasions, 6 months apart (immunoturbidimetry). Patients underwent clinical and laboratory status (11). Ambulatory 24-h blood pres- evaluations. Ambulatory blood pressure monitoring and echocardiograms were also performed. sure monitoring has a better correlation with target organ damage than doctor’s RESULTS — UAER was found to correlate positively with systolic doctor’s office blood pres- office blood pressure measurements (12) sure measurements (r ϭ 0.243, P ϭ 0.021) and ambulatory blood pressure (24 h: r ϭ 0.280, P ϭ and allows the evaluation of blood pres- 0.008) and left ventricular posterior wall thickness (r ϭ 0.359, P ϭ 0.010).
    [Show full text]
  • Prevalence of Ketosis, Ketonuria, and Ketoacidosis During Liberal Glycemic
    Luethi et al. Critical Care (2016) 20:297 DOI 10.1186/s13054-016-1462-7 RESEARCH Open Access Prevalence of ketosis, ketonuria, and ketoacidosis during liberal glycemic control in critically ill patients with diabetes: an observational study Nora Luethi1, Luca Cioccari1,2, Marco Crisman1,3, Rinaldo Bellomo1,4, Glenn M. Eastwood1 and Johan Mårtensson1,5* Abstract Background: It is uncertain whether liberal glucose control in critically ill diabetic patients leads to increased ketone production and ketoacidosis. Therefore, we aimed to assess the prevalence of ketosis, ketonuria and ketoacidosis in critically ill diabetic patients treated in accordance with a liberal glycemic control protocol. Methods: We performed a prospective observational cohort study of 60 critically ill diabetic patients with blood and/or urine ketone bodies tested in ICU. All patients were treated according to a liberal glucose protocol targeting a blood glucose level (BGL) between 10 and 14 mmol/l in a single tertiary intensive care unit in Australia. We measured quantitative bedside blood 3-beta-hydroxybutyrate (β-OHB) and semi-quantitative urine ketones on ICU admission and daily during ICU stay, for a maximum of 10 consecutive days. Results: Median blood β-OHB level on admission was 0.3 (0.1, 0.8) mmol/l. Ketoacidosis was rare (3 %), but some level of ketosis (β-OHB ≥0.6 mmol/l) was found in 38 patients (63 %) early during their ICU stay. However, there was no significant difference in prevalence or severity of ketonemia and ketonuria among patients with BGL above (permissive hyperglycemia) or below 10 mmol/l. On multivariable linear regression analysis there was no association between blood ketone levels and BGL, HbA1c, lactate levels, hematocrit, catecholamine infusion or APACHE III score.
    [Show full text]
  • Ketonemia and Ketonuria in Gestational Diabetes Mellitus
    HORMONES 2015, 14(4):644-650 Research paper Ketonemia and ketonuria in gestational diabetes mellitus Loukia Spanou,1 Kalliopi Dalakleidi,2 Konstantia Zarkogianni,2 Anastasia Papadimitriou,1 Konstantina Nikita,2 Vasiliki Vasileiou,1 Maria Alevizaki,1 Eleni Anastasiou1 1Diabetes Center, 1st Endocrine Section, Alexandra General Hospital, Athens; 2Faculty of Electrical and Computer Engineering, National Technical University of Athens, Athens; Greece ABSTRACT %$&.*5281'7KHXVHRIFDSLOODU\EORRGȕK\GUR[\EXW\UDWH +% LVDPRUHSUHFLVH method than urine ketones measurement for the diagnosis of diabetic ketoacidosis. Fasting ketonuria is common during normal pregnancy, while there is evidence that it is increased among pregnant women with Gestational Diabetes Mellitus (GDM) who are on a diet. 3HB levels have been related to impaired offspring psychomotor development. Reports with concomitant measurement of blood and urine ketones in women with GDM who followed a balanced diet are lacking. OBJECTIVE: To compare the prevalence of fasting ketonemia and ketonuria in women with GDM following the Institute of Medicine diet instructions and assess their possible relation with metabolic parameters and therapeutic interventions. RESEARCH DESIGN AND METHODS: 180 women with GDM were studied. In each patient, in successive visits, capillary blood and urine ketones were simultaneously measured. The total measurements were 378, while the average number of measurements per patient was 2.1. RESULTS: The prevalence of ketonuria was significantly higher than that of ketonemia (x2=21.33, p <0.001). Significantly higher mean 3HB levels were observed with respect to ketonuria severity (p=0.001). Bedtime carbohydrate intake was associated with significantly lower 3HB levels (p=0.035). Insulin treatment was associated with significant 3HB levels reduction (p=0.032).
    [Show full text]
  • Diabetic Ketoacidosis
    Diabetic ketoacidosis Diabetic Ketoacidosis Dr. Christiane Stengel Dipl. ECVIM-CA (IM) FTÄ für Kleintiere High blood glucose with the presence of ketones in the urine and bloodstream, often caused by having/giving too little insulin or during illness. Dr. Christiane Stengel Diabetic ketoacidosis v Diabetes mellitus not diagnosed so far (common) v Or „derailed“ Diabetes (possible) & a “triggering condition” lead to increased „counter- regulatory“ hormones: o Glucagon ↑ o Cortisol ↑ o Adrenalin ↑ o GH ↑ v Low insulin and high glucagon increased glucagon:insulin-ratio medpets.de v Bacterial infections v Endocrine disease o Urinary tract o Hypercortisolism o Pneumonia o Hypothyroidism o Pyometra /prostatitis o Hyperthyroidism o Pyoderma o Acromegaly v Inflammatory v Physiological condition endocrine change o Pancreatitis o Dioestrus v Iatrogenic v Miscellaneous o Steroid administration o Chronic kidney disease o Neoplasia Dr. Christiane Stengel Diabetic ketoacidosis v Vomiting, lethargy, anorexia, weakness, (PU/PD), triggering effect signs v Severe dehydration (hypovolaemic shock) o Glukosuria osmotic diuresis o Ketonuria osmotic diuresis o Fluid loss from vomiting o Decreased fluid intake from anorexia and lethargy A. Kussmaul v Tachycardia, change in pulse quality, colour and capillary refill time v Increased breathing effort (often with normal frequency) due to metabolic acidosis (Kussmaul breathing) , ketone smell v Haematology v Biochemistry profile ± ketones in plasma v Urinalysis and urine culture v Blood gas analysis v ± abdominal
    [Show full text]
  • What Tells Routine Urine Examination
    What tells Routine Urine Examination Specific gravity Animals producing large volume of urine have low specific gravity where as very small volume of urine has high specific gravity (animal with oliguric acute intrarenal failure that has a low urine volume and low specific gravity). Fluid therapy, diuretics, glucocorticoids and diet affect urine specific gravity. Sp. gr. is higher in morning samples and was observed to decrease as the age of the animal increased. Urine pH Acidic urine: - ingestion of meat, respiratory and metabolic acidosis, severe vomition, severe diarrhea, starvation, pyrexia, other protein catabolic states and administration of urinary acidifiers. Alkaline urine:- recent meal, ingestion of alkali, UTI with urease-producing bacteria, renal tubular acidosis, diets rich in vegetables and cereals, and metabolic and respiratory alkalosis, urine allowed to stand open to air at room temperature. Proteinuria Trace or 1+ protein level is considered normal with a specific gravity greater than 1.035. Highly alkaline urine (>8) can produce a false positive result. The most common cause of inflammatory proteinuria is urinary tract infection (UTI). If hematuria and pyouria is ruled out, then another urinalysis should be performed to determine the persistent proteinuria. Transient proteinuria is due to strenuous exercise, fever, seizures, and venous congestion of the kidneys and it is insignificant. Persistent proteinuria is usually due to glomerulonephritis or amyloidosis. The urine protein: creatinine ratio helps to determine the magnitude and significance of proteinuria. Glucosuria False negative results come due to large quantity of ascorbic acid, contaminated with H2O2, Cl, hypochlorite, formaldehyde or fluorides in urine. Cats with cystitis may give a false positive reaction.
    [Show full text]