Respiratory Adaptations to Lung Morphological Defects in Adult Mice Lacking Hoxa5 Gene Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells. -
Increased HOXA5 Expression Provides a Selective Advantage for Gain of Whole Chromosome 7 in IDH Wild-Type Glioblastoma
Downloaded from genesdev.cshlp.org on May 11, 2018 - Published by Cold Spring Harbor Laboratory Press Increased HOXA5 expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma Patrick J. Cimino,1,2,17 Youngmi Kim,1,17 Hua-Jun Wu,3,4,5 Jes Alexander,1 Hans-Georg Wirsching,1,6 Frank Szulzewsky,1 Ken Pitter,7 Tatsuya Ozawa,1,8 Jiguang Wang,9,10,16 Julio Vazquez,11 Sonali Arora,1 Raul Rabadan,9,10 Ross Levine,12 Franziska Michor,3,4,5,13,14,15 and Eric C. Holland1 1Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 2Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington 98104, USA; 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; 4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; 5Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 6Department of Neurology, University Hospital Zurich, Zurich 8091, Switzerland; 7Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; 8Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan; 9Department of Biomedical Informatics, Columbia University, New York, New York 10027, USA; 10Department of Systems Biology, Columbia University, New York, -
Functional Genomics Atlas of Synovial Fibroblasts Defining Rheumatoid Arthritis
medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability Xiangyu Ge1*, Mojca Frank-Bertoncelj2*, Kerstin Klein2, Amanda Mcgovern1, Tadeja Kuret2,3, Miranda Houtman2, Blaž Burja2,3, Raphael Micheroli2, Miriam Marks4, Andrew Filer5,6, Christopher D. Buckley5,6,7, Gisela Orozco1, Oliver Distler2, Andrew P Morris1, Paul Martin1, Stephen Eyre1* & Caroline Ospelt2*,# 1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 2Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 3Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia 4Schulthess Klinik, Zurich, Switzerland 5Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 6NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK 7Kennedy Institute of Rheumatology, University of Oxford Roosevelt Drive Headington Oxford UK *These authors contributed equally #corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. -
Long Noncoding RNA ANRIL Promotes Non–Small Cell Lung
Published OnlineFirst December 12, 2014; DOI: 10.1158/1535-7163.MCT-14-0492 Cancer Biology and Signal Transduction Molecular Cancer Therapeutics Long Noncoding RNA ANRIL Promotes Non–Small Cell Lung Cancer Cell Proliferation and Inhibits Apoptosis by Silencing KLF2 and P21 Expression Feng-qi Nie1, Ming Sun2, Jin-song Yang3, Min Xie2, Tong-peng Xu1, Rui Xia2, Yan-wen Liu2, Xiang-hua Liu2, Er-bao Zhang2, Kai-hua Lu1, and Yong-qian Shu1 Abstract Recent evidence highlights long noncoding RNAs (lncRNA) was increased in NSCLC tissues, and its expression level was as crucial regulators of cancer biology that contribute to essen- significantly correlated with tumor–node–metastasis stages and tial cancer cell functions such as cell proliferation, apoptosis, tumor size. Moreover, patients with high levels of ANRIL and metastasis. In non–small cell lung cancer (NSCLC), several expression had a relatively poor prognosis. In addition, taking lncRNAs' expressions are misregulated and have been nomi- advantage of loss-of-function experiments in NSCLC cells, we nated as critical actors in NSCLC tumorigenesis. LncRNA ANRIL found that knockdown of ANRIL expression could impair cell was first found to be required for the PRC2 recruitment to and proliferation and induce cell apoptosis both in vitro and vivo. silencing of p15INK4B, the expression of which is induced by the Furthermore, we uncover that ANRIL could not repress p15 ATM–E2F1 signaling pathway. Our previous study showed that expression in PC9 cells, but through silencing of KLF2 and P21 ANRIL was significantly upregulated in gastric cancer, and it transcription. Thus, we conclusively demonstrate that lncRNA could promote cell proliferation and inhibit cell apoptosis by ANRIL plays a key role in NSCLC development by associating silencing of miR99a and miR449a transcription. -
SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title The Role of AMPK and miR-92a in the Shear Stress Regulation of KLF2 Permalink https://escholarship.org/uc/item/25z876bc Author Wu, Wei Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE The Role of AMPK and miR-92a in the Shear Stress Regulation of KLF2 A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cellular, Molecular and Developmental Biology by Wei Wu December 2010 Dissertation Committee: Dr. John Shyy, Chairperson Dr. Ameae Walker Dr. Kathryn Defea Copyright by Wei Wu 2010 ii The Dissertation of Wei Wu is approved: ------------------------------------------ ------------------------------------------ ------------------------------------------ Committee Chairperson University of California, Riverside iii Acknowledgements It is a pleasure to thank those who made this dissertation possible. First of all, I would like to thank CMDB program for giving me the opportunity to pursue my Ph.D degree in UCR. A hearty thanks to Dr. Anthony W. Norman, Dr. Helen Henry and the professors who taught and encouraged me in these past years. I owe my deepest gratitude to my major professor, Dr. John Y-J. Shyy, for his guidance and support. I am also grateful to Dr. Ameae M. Walker and Dr. Kathryn Defea for their valuable discussions and constructive suggestions. I am thankful to all of my colleagues and friends for their generous help and precious discussion on my work. My parents and parents-in-law, thanks for your support and unconditional love. Even though we are thousand of miles away, you were always there whenever I needed you. -
Integrative Bulk and Single-Cell Profiling of Premanufacture T-Cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-Cell Therapy
Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 RESEARCH ARTICLE Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy Gregory M. Chen1, Changya Chen2,3, Rajat K. Das2, Peng Gao2, Chia-Hui Chen2, Shovik Bandyopadhyay4, Yang-Yang Ding2,5, Yasin Uzun2,3, Wenbao Yu2, Qin Zhu1, Regina M. Myers2, Stephan A. Grupp2,5, David M. Barrett2,5, and Kai Tan2,3,5 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 ABSTRACT The adoptive transfer of chimeric antigen receptor (CAR) T cells represents a breakthrough in clinical oncology, yet both between- and within-patient differences in autologously derived T cells are a major contributor to therapy failure. To interrogate the molecular determinants of clinical CAR T-cell persistence, we extensively characterized the premanufacture T cells of 71 patients with B-cell malignancies on trial to receive anti-CD19 CAR T-cell therapy. We performed RNA-sequencing analysis on sorted T-cell subsets from all 71 patients, followed by paired Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on T cells from six of these patients. We found that chronic IFN signaling regulated by IRF7 was associated with poor CAR T-cell persistence across T-cell subsets, and that the TCF7 regulon not only associates with the favorable naïve T-cell state, but is maintained in effector T cells among patients with long-term CAR T-cell persistence. -
Expression of the Murine Hoxa4 Gene Requires Both Autoregulation and a Conserved Retinoic Acid Response Element
Development 125, 1991-1998 (1998) 1991 Printed in Great Britain © The Company of Biologists Limited 1998 DEV4970 Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element Alan I. Packer1,3, David A. Crotty1,3,*, Vivian A. Elwell3 and Debra J. Wolgemuth1-4,† 1Department of Genetics and Development and 2Obstetrics and Gynecology, 3The Center for Reproductive Sciences and the 4Columbia Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA *Present address: Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA †Author for correspondence at address 1 (e-mail: [email protected]) Accepted 30 March; published on WWW 6 May 1998 SUMMARY Analysis of the regulatory regions of the Hox genes has flanking the Hoxd4 gene. Administration of retinoic acid to revealed a complex array of positive and negative cis-acting Hoxa4/lacZ transgenic embryos resulted in stage- elements that control the spatial and temporal pattern of dependent ectopic expression of the reporter gene in the expression of these genes during embryogenesis. In this neural tube and hindbrain. When administered to Hoxa4 study we show that normal expression of the murine Hoxa4 null embryos, however, persistent ectopic expression was gene during development requires both autoregulatory and not observed, suggesting that autoregulation is required for retinoic acid-dependent modes of regulation. When maintenance of the retinoic acid-induced expression. introduced into a Hoxa4 null background, expression of a Finally, mutation of the consensus retinoic acid response lacZ reporter gene driven by the Hoxa4 regulatory region element eliminated the response of the reporter gene to (Hoxa4/lacZ) is either abolished or significantly reduced in exogenous retinoic acid, and abolished all embryonic all tissues at E10.5-E12.5. -
Role of HOX Genes in Stem Cell Differentiation and Cancer
Thomas Jefferson University Jefferson Digital Commons Kimmel Cancer Center Papers, Presentations, and Grand Rounds Kimmel Cancer Center 7-22-2018 Role of HOX Genes in Stem Cell Differentiation and Cancer. Seema Bhatlekar Helen F. Graham Cancer Center and Research Institute; University of Delaware Jeremy Z Fields CATX Inc. Bruce M. Boman Thomas Jefferson University; Helen F. Graham Cancer Center and Research Institute; University of Delaware; CATX Inc. Follow this and additional works at: https://jdc.jefferson.edu/kimmelgrandrounds Part of the Oncology Commons Let us know how access to this document benefits ouy Recommended Citation Bhatlekar, Seema; Fields, Jeremy Z; and Boman, Bruce M., "Role of HOX Genes in Stem Cell Differentiation and Cancer." (2018). Kimmel Cancer Center Papers, Presentations, and Grand Rounds. Paper 62. https://jdc.jefferson.edu/kimmelgrandrounds/62 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Kimmel Cancer Center Papers, Presentations, and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Hindawi Stem Cells International Volume 2018, Article ID 3569493, 15 pages https://doi.org/10.1155/2018/3569493 Review Article Role of HOX Genes in Stem Cell Differentiation and Cancer 1,2 3 1,2,3,4 Seema Bhatlekar , Jeremy Z. -
The Expression of Genes Contributing to Pancreatic Adenocarcinoma Progression Is Influenced by the Respective Environment – Sagini Et Al
The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment – Sagini et al Supplementary Figure 1: Target genes regulated by TGM2. Figure represents 24 genes regulated by TGM2, which were obtained from Ingenuity Pathway Analysis. As indicated, 9 genes (marked red) are down-regulated by TGM2. On the contrary, 15 genes (marked red) are up-regulated by TGM2. Supplementary Table 1: Functional annotations of genes from Suit2-007 cells growing in pancreatic environment Categoriesa Diseases or p-Valuec Predicted Activation Number of genesf Functions activationd Z-scoree Annotationb Cell movement Cell movement 1,56E-11 increased 2,199 LAMB3, CEACAM6, CCL20, AGR2, MUC1, CXCL1, LAMA3, LCN2, COL17A1, CXCL8, AIF1, MMP7, CEMIP, JUP, SOD2, S100A4, PDGFA, NDRG1, SGK1, IGFBP3, DDR1, IL1A, CDKN1A, NREP, SEMA3E SERPINA3, SDC4, ALPP, CX3CL1, NFKBIA, ANXA3, CDH1, CDCP1, CRYAB, TUBB2B, FOXQ1, SLPI, F3, GRINA, ITGA2, ARPIN/C15orf38- AP3S2, SPTLC1, IL10, TSC22D3, LAMC2, TCAF1, CDH3, MX1, LEP, ZC3H12A, PMP22, IL32, FAM83H, EFNA1, PATJ, CEBPB, SERPINA5, PTK6, EPHB6, JUND, TNFSF14, ERBB3, TNFRSF25, FCAR, CXCL16, HLA-A, CEACAM1, FAT1, AHR, CSF2RA, CLDN7, MAPK13, FERMT1, TCAF2, MST1R, CD99, PTP4A2, PHLDA1, DEFB1, RHOB, TNFSF15, CD44, CSF2, SERPINB5, TGM2, SRC, ITGA6, TNC, HNRNPA2B1, RHOD, SKI, KISS1, TACSTD2, GNAI2, CXCL2, NFKB2, TAGLN2, TNF, CD74, PTPRK, STAT3, ARHGAP21, VEGFA, MYH9, SAA1, F11R, PDCD4, IQGAP1, DCN, MAPK8IP3, STC1, ADAM15, LTBP2, HOOK1, CST3, EPHA1, TIMP2, LPAR2, CORO1A, CLDN3, MYO1C, -
IGF1-Mediated HOXA13 Overexpression Promotes Colorectal
Qiao et al. Cell Death and Disease (2021) 12:564 https://doi.org/10.1038/s41419-021-03833-2 Cell Death & Disease ARTICLE Open Access IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R Chenyang Qiao1, Wenjie Huang2,3,JieChen1,WeiboFeng1, Tongyue Zhang2, Yijun Wang2,DanfeiLiu2,XiaoyuJi2, Meng Xie2, Mengyu Sun2,DaimingFan1,KaichunWu1 and Limin Xia 2 Abstract Metastasis is the major reason for the high mortality of colorectal cancer (CRC) patients and its molecular mechanism remains unclear. Here, we report a novel role of Homeobox A13 (HOXA13), a member of the Homeobox (HOX) family, in promoting CRC metastasis. The elevated expression of HOXA13 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in two independent CRC cohorts. Overexpression of HOXA13 promoted CRC metastasis whereas downregulation of HOXA13 suppressed CRC metastasis. Mechanistically, HOXA13 facilitated CRC metastasis by transactivating ATP-citrate lyase (ACLY) and insulin-like growth factor 1 receptor (IGF1R). Knockdown of ACLY and IGFIR inhibited HOXA13-medicated CRC metastasis, whereas ectopic overexpression of ACLY and IGFIR rescued the decreased CRC metastasis induced by HOXA13 knockdown. Furthermore, Insulin-like growth factor 1 (IGF1), the ligand of IGF1R, upregulated HOXA13 expression through the PI3K/AKT/HIF1α pathway. Knockdown of HOXA13 decreased IGF1-mediated CRC metastasis. In addition, the combined treatment of ACLY inhibitor ETC-1002 and IGF1R inhibitor Linsitinib 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; dramatically suppressed HOXA13-mediated CRC metastasis. In conclusion, HOXA13 is a prognostic biomarker in CRC patients. Targeting the IGF1-HOXA13-IGF1R positive feedback loop may provide a potential therapeutic strategy for the treatment of HOXA13-driven CRC metastasis. -
Cbx3 Maintains Lineage Specificity During Neural Differentiation
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION et al. 2013). However, Cbx3 is also enriched at promoters Cbx3 maintains lineage of mouse embryonic fibroblast (MEF)-derived pre-iPSCs specificity during neural (preinduced pluripotent stem cells), where it does not cor- relate with H3K9 methylation (Sridharan et al. 2013). differentiation RNAi knockdown of Cbx3 promotes reprogramming of fi- broblasts to iPSCs (Sridharan et al. 2013). Chengyang Huang,1,2 Trent Su,1 Yong Xue,1 1 3 1 Cbx3 plays important roles in developmental processes Chen Cheng, Fides D. Lay, Robin A. McKee, (Morikawa et al. 2013). In model systems, Cbx3 promotes Meiyang Li,2 Ajay Vashisht,1 James Wohlschlegel,1 neuronal maturation, kidney development, differentia- Bennett G. Novitch,4 Kathrin Plath,1 tion of ESCs to smooth muscle in culture, and embryonic Siavash K. Kurdistani,1 and Michael Carey1 arteriogenesis (Xiao et al. 2011; Dihazi et al. 2015; Oshiro et al. 2015). Little is known of how Cbx3 functions in dif- 1Department of Biological Chemistry, Eli and Edythe Broad ferentiation, but its promoter localization suggested that Center for Regenerative Medicine and Stem Cell Research, David it might directly affect transcription through the preinitia- Geffen School of Medicine, University of California at Los tion complex (PIC) (Grunberg and Hahn 2013; Allen and Angeles, Los Angeles California 90095, USA; 2Department of Taatjes 2015). The PIC is assembled in response to activa- Neurobiology, Shantou University Medical College, Shantou tors and requires the Mediator coactivator complex to re- 515041, China; 3Department of Molecular, Cell, and cruit the general transcription factors and Pol II (Chen Developmental Biology, University of California at Los Angeles, et al.