New Signals Trom an Old Timer

Total Page:16

File Type:pdf, Size:1020Kb

New Signals Trom an Old Timer ’i1New Signals trom an Old Timer 181 wwv Fig. 1 On occasion, operator makes television time com- By Lowell Fey’, WWV. Ft. Collins, Colo. parisons at NBS Boulder. Sandra Danielson of the Broad- cast Services is at the controls. Although many other changes arranged into new places with some tones every other minute (with some have occurred in broadcasting over periods where 500 Hz is added for exceptions) or the 440 Hz tone once the years, those who tune in to the good measure. All use of the Morse per hour may still be used. In ad- National Bureau of Standards time Code will be dropped along with dition, the 45-second slots not used broadcast stations WWV and the NASA 36-bit “buzz saw” code for announcements will be used for WWVH have come to expect the which will be replaced with a one- a 500 Hz tone. NBS takes the point same familiar time signals year bit per second IRIG H time code of view that some kind of modula- after year. But not much longer. on a 100 Hz subcarrier. There still tion should be present nearly all the Soon a new broadcast will be heard will be geoalerts and sorile othx time to make the signal easy to find with more kinds of services than announcements. There no longer when tuning it in. before for a wider variety of time will be any completely silent The new format is designed to and frequency users. periods. serve a new class of users. These Starting July 1, 1971 there will Now, let’s look at the new format users make slow-speed strip chart be more frequent voice time an- from the user’s standpoint. The recordings and desired timing marks. nouncements, a different way of casual clocksetter will never have At speeds of 1” per hour, marks marking hours and minutes, no si- to wait longer than a minute to once per hour should serve. These , lent period, and no more Morse get time-of-day information. This can be obtained from either of two de or the fast NASA time code. feature will also benefit those who sources. In a high signal-to-noise instead, a slow time code will be wish to time tape recordings of area the 0.8 second 1500 Hz tick added along with some other various occurrences; €or instance, can operate a frequency sensitive changes. intermittently occurring conversa- circuit such as a resonant reed In many respects the services will tions between a radio dispatcher and relay to provide a marker signal. be the same. The WWV transmit- outlying stations. To time the oc- The same use could be made of ters will remain at Fort Collins, currence of short exchanges, the the 440 Hz hour marker, but since Colorado, broadcasting on the same tape recorder need run no more it lasts 45 seconds much better frequencies of 2.5, 5, 10, 15, 20, than one minute. For all these uses noise discrimination can be ob- and 25 MHz. Power output will the tick at the beginning of the first tained. Absence of this signal at not change from the present 10 kW second will be lengthened to 0.8 2400 hours can be used to mark on 5, 10, 15, and 20 MHz and second to provide easier recogni- the beginning of the Greenwich 2.5 kW on the other frequencies. tion of the beginning of the minute. mean time 24-hour day. For faster The ticks will continue nearly as For more precise clock setting, strip chart recordings the same before: 5 cycles of 1000 Hz each the well-known oscilloscope tech- technique can be used to mark each second, There will be a special tick nique of aligning the beginning of minute with the 0.8 second 1000 0.8 seconds long to mark the be- a received 5 ms 1000 Hz tick with Hz tone, or every other minute with ginning of each minute. This tick the scope trigger from a local clock the 600 Hz tone. will also be 1000 Hz except €or may still be used. No matter what If complete identification of the the first one each hour, which will other modulation is on the station time of Occurrence of a recorded be 1500 Hz. at the time, the 5 ms tick will al- event is required, this also may be Voice announcements will be ways be protected from interference obtained using the IRIG H code. once each minute instead of once from this modulation by being ap- This code has a bit rate of once every five minutes. But . aP- propriately located in a 40 ms per second and gives the day num- parently nothing is safe from Wom- “hole” chopped in the modulation. ber of the year and the hour and en’s Lib . time announcements Knowledge of propagation delay minute. This information is pre- from WWV’s sister station, WWVH then makes time synchronization to sented in binary coded decimal ir! Hawaii, will now appropriately about 1 ms possible, as before. form and is repeated each minute. in a woman’s voice, even ending On the new WWV and WWVH with a friendly Aloha! There will Standard Audio Tones format, the code will be amplitude still be the same audio tones as For standard audio frequency modulated on a 100 Hz subcarrier, before, 440 and 600 Hz, but re- comparison purposes the 600 Hz which may not be audible using an 44 BROADCAST ENGINEERING wwv Fig. 2 The WWV (topside) and WWVH (bottom) format wheel, showing infor- mation transmitted each minute of the THE 29th SECOND PULSE OMITTED.. BEGINNING OF EACH MINUTE IDENTIFIED FORMAT hour. BY 0.8 SECOND LONG 1200H2 TONE (TYPICAL) ordinary receiver. With filtering and clipping, however, it will be suitable for recording on a strip chart re- corder and can be easily read by eye with a little practice. Another new feature of the broad- cast is provision for 45-second an- nouncements every other minute (again with some exceptions) from her government agencies for their in purposes. The geoalerts and propagation forecasts presently broadcast by WWV would fall into this category. There is room for 24 July, 1971 80 WWV transmission frequency st an arbitrary transmitter location. In the 60 continental U.S., however, at lea3 one of WWV’s frequencies should 40 always be receivable. A freqi-- .icy diversity receiver should thus 20 vide the reliability needed for re- W broadcast purposes. Such receivers 0 3 are available commercially from at 50 + least one company specializing in 24 WWV receivers. -20 For general listening use, almost any short wave receiver will suffice. -40 However, there are a number of special purpose timing receivers -60 available capable of being fix-tuned to any of WWV’s frequencies. For those who are interested in WWV’s -80, geographical coverage on its various LONGITUDE frequencies in the Western Hemi- 80 sphere, some maps giving best usable frequencies are provided. 60 These plots are the result of com- puterized calculations of coverage 40 predictions made by NBS before relocating WWV from Greenbelt, 20 Maryland to Fort Collins, Colorado W in 1966. They take into account n 2 seasonal and day-to-night variations to and also variations due to the 11- c 4J year sunspot cycle. The peak of the -20 sunspot cycle occurred in 1969. So far, nothing has been 5 -40 about the source of WWV’s time. This is, of course, the world-famous -60 NBS atomic clock located in the NBS research laboratories at Boulder, Colorado. Fort Collins is -80 located 50 miles away and has its LONGITUDE own clock system, so intercompari- Fig. 4 Map A shows the frequencies (in MHz) around the Western Hemis- sons must be made with the Boulder phere that are predicted to be the best for WWV time announcements for clock to insure that the Fort Collins December nighttime. Map B is for December daytime. clock is kept in agreement. These are made every day using the sig- such announcements each hour on To allow this, the new on-the- nals from a Denver television sta- WWV and 23 on WWVH. hour broadcast will say: “At the tion to relate the times of the two tone (pause) 23 hours Greenwich clocks. The time of reception of a Commercial Use Mean Time.” (tone) (pause) “Na- specific “sync pulse” is noted at Even with all these changes, one tional Bureau of Standards Time.” both Boulder and Fort Collins. might never think of hearing WWV (pause) “This is radio station WWV, Knowing the television signal propa- time signals coming from anywhere . .” The part to be rebroadcast gation delay between the two loca- but the WWV transmitters at Fort would be only the tone marking tions then permits a time compari- Collins, Colorado. But, that also the beginning of the hour and the son accurate to a few billionths of may change. The new time an- words “National Bureau of Stan- a second. nouncements are arranged so that dards Time.” The local announcer While this is a much better ac- WWV on-the-hour time signals can would identify the hour of the tone curacy than can actually be re- be rebroadcast as a public service according to his own time zone. ceived on WWV, it insures that by any commercial broadcast sta- In order to make sure the time the almost incredible accuracy of tion capable of tuning them in on announcement can be rebroadcast the atomic clock-about a part in a receiver.
Recommended publications
  • The BPL Dilemma
    Reprinted with permission from CQ VHF Magazine, Spring 2004 issue. Copyright CQ Communications 2004 The BPL Dilemma Hams claim Broadband over Power Lines will interfere with their on-the-air operations. The utility companies claim not. Read how they are both right . sort of. By Gary Pearce,* KN4AQ still academic. They haven’t encountered Because of the importance of the it yet. I will provide a quick tutorial. Broadband over Power Lines (BPL) The basics of BPL are simple. It is a issue, “FM” columnist Gary Pearce, method of delivering high-speed internet KN4AQ, devotes his space this time to the to homes and small businesses using the investigation of a BPL test site and the local power lines that crisscross neigh- surrounding area. He will be back in the borhoods either overhead or under- next issue of CQ VHF with his regular ground. This is a brilliantly obvious idea column material. —N6CL (“the wires are already there!”) that was delayed because the AC power grid is a really noisy, crappy signal-delivery ince last fall, I’ve been up to my medium for anything above 60 Hz. The eyeballs in BPL—Broadband over march of technology, however, is mak- Power Lines—and its effect on ing it feasible. It is the third method of Samateur radio. If you’re up on current TV doing that, following DSL (Digital culture, you can call it “HF Eye for the FM Subscriber Line) on the phone lines and Guy.” Our area has been “lucky” enough cable TV (nobody’s come up with a cute to host one of the few BPL trials, courtesy name or acronym for broadband over of my local power company, Progress cable TV; they just call it “cable”).
    [Show full text]
  • A Century of WWV
    Volume 124, Article No. 124025 (2019) https://doi.org/10.6028/jres.124.025 Journal of Research of the National Institute of Standards and Technology A Century of WWV Glenn K. Nelson National Institute of Standards and Technology, Radio Station WWV, Fort Collins, CO 80524, USA [email protected] WWV was established as a radio station on October 1, 1919, with the issuance of the call letters by the U.S. Department of Commerce. This paper will observe the upcoming 100th anniversary of that event by exploring the events leading to the founding of WWV, the various early experiments and broadcasts, its official debut as a service of the National Bureau of Standards, and its role in frequency and time dissemination over the past century. Key words: broadcasting; frequency; radio; standards; time. Accepted: September 6, 2019 Published: September 24, 2019 https://doi.org/10.6028/jres.124.025 1. Introduction WWV is the high-frequency radio broadcast service that disseminates time and frequency information from the National Institute of Standards and Technology (NIST), part of the U.S. Department of Commerce. WWV has been performing this service since the early 1920s, and, in 2019, it is celebrating the 100th anniversary of the issuance of its call sign. 2. Radio Pioneers Other radio transmissions predate WWV by decades. Guglielmo Marconi and others were conducting radio research in the late 1890s, and in 1901, Marconi claimed to have received a message sent across the Atlantic Ocean, the letter “S” in telegraphic code [1]. Radio was called “wireless telegraphy” in those days and was, if not commonplace, viewed as an emerging technology.
    [Show full text]
  • N O T I C E This Document Has Been Reproduced From
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE r^i 44 The University of Tennessee Department of Electrical Engineering Knoxville, Tennessee 37916 (NASA-C,9-1bu791) A SIULY OF LNIYEASA.I N82--2! MODULATICN TECHN101 S APPL11 D TO SA?ELLI;TE 4 DATA COLLECTION Final Report (Tennessee tFn v.) 176 p HC A09/MF A01 CSCL 1711 Uncla G3/32 21917 A STUDY OF UNIVERSAL MODULATION TECHNIQUES APPLIED TO SATELLITE DATA COLLECTION If ^^ tit Final Report Y December 1980 Contract No. NAS5-24250 Prepared for National Aeronautics and Space Administration Goddard Space Flight Center r Greenbelt, Maryland 20771 f i PRECEDING PAGE BLANK NOT FILMED .Osp* Abstract A scheme for a universal modulation and frequency control system for use with data-collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data-collection service and can simultaneously synthesize the proper RF carrier frequencies employed, A novel technique for DCP time and frequency control is presented, The emissions: of NBS rad o station WW/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus tem perature, supply voltage, and time.
    [Show full text]
  • Species Selection in a Global Change Scenario Francesco Ferrini and Alessio Fini
    Planning the Green City of 2050: Species Selection in a Global Change Scenario Francesco Ferrini and Alessio Fini Department of Agri-Food Production and Environmental Sciences University of Florence – Italy Viale delle Idee, 30 – 50019 Sesto Fiorentino (Florence) - Italy Abstract The presentation will focused on the technical and practical solutions for the selection of trees that might be the best choice in the urban environments for the next 100 years, given differences in urban sites (infrastructures, climate, soils etc), species attributes, management requirements and climate change. The presentation will be divided in the following parts: • Trees and climate change in the urban environment (main characteristics of the urban areas. Tree physiology as influenced by typical environmental constraints of urban stands). • Trees and infrastructure (Improving relations between technical infrastructures and vegetation. • Selection of planting material in a global change scenario Presenter Biography Francesco Ferrini, Ph.D. Full Professor at the Department of Agri-Food and Environmental Sciences – University of Florence (Italy). Scientific activity focused on: Impact of plant selection and nursery production practices on root regeneration and tree growth after planting Physiological and growth aspects of different species as affected by different cultivation techniques after planting in the urban environment Evaluation of morpho-physiological and biochemical parameters to study urban stress tolerance on tree species. Evaluation of the ability of shrub and tree species to mitigate the effect of pollution in the urban and periurban environment Planning the green city in the global change era: urban tree functions and suitability for predicted future climates (TreeCity) From 1990 he has published more than 210 scientific and technical papers in Italian (112) and in English (101) in international referred and nationwide journals.
    [Show full text]
  • STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
    Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur.
    [Show full text]
  • What Time I T
    Does Anybody Really What Time It Is? 24/7/365, Here's How Time Got On Your Best Side By Michael A. Lombardi ccasionally I'll talk to people who known to most radio buffs. He used a can't believe that some radio sta- spark-gap transmitter to successfully 0tions exist solely to transmit accu- send radio signals over a distance of more rate time. While they wouldn't poke fun than one mile in 1895. By 1899 he had at the Weather Channel or even a radio transmitted signals across the English station that plays nothing but Garth Channel, and sent signals across the Brooks records (imagine that), people Atlantic Ocean in 1901. often make jokes about time signal sta- Surprisingly, in the midst of Marconi's tions. They'll ask "Doesn't the program- early work, before any radio stations exist- ming get a little boring?'or "How does ed, or before the public even completely the announcer stay awake?'There have believed his results, a proposal was made even been parodies of time signal sta- to use the new wireless medium to broad- tions. A recent Internet spoof of WWV cast time. In November 1898. an optical containedzingers like "we'll be back with instrument maker and inventor named Sir the time on WWV in just a minute, but Howard Grubb addressed the Royal first, here's another minute." Dublin Society and proposed the concept An episode of the animated Powerpuff of a radio controlled clock. After many Girls joined in the fun with a skit featur- years of working with astronomical obser- ing a TV announcer named Sonnv Dial L, vatories.
    [Show full text]
  • Time and Frequency Users' Manual
    ,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics
    [Show full text]
  • Dispersion Compensation Module
    www.vialite.com +44 (0)1793 784389 [email protected] +1 (855) 4-VIALITE [email protected] ViaLiteHD – Dispersion Compensation Module Dispersion Compensation Module (DCM) 1U Rack chassis Standard lengths and customer specific Compatible with any RF frequency SC/APC as standard DCM Standard 5-year warranty A DCM/Dispersion Compensation Fiber (DCF) provides fixed chromatic dispersion compensation for diverse and disaster recovery DWDM networks. ViaLiteHD DCMs are purely passive modules based on the ITU G.652 standard to provide negative dispersion for DWDM transmission systems, increasing transmission range and decreasing BER of optical links. It can be used to address dispersion on standard single mode optical fiber (SMF) across the entire C-Band and L-Band range. The DCMs are available as part of ViaLite’s Ka-Band diversity antenna system. Each DCM can be supplied in 5 km increments, supporting medium to long distance fiber optic systems ranging from 30 km to 600 km. Advantages Formats Low Insertion loss 1U Chassis 19” rack mountable Passive device Related Products Low polarization mode dispersion DWDM Mux/De-Mux Excellent performance price ratio DWDM EDFA’s and Boosters Signal performance improvements Delay Lines L-Band HTS 700-2450 MHz Applications Fixed satcom earth stations and teleports Ka-Band diversity systems L-Band long distance links G.652 100% C-Band compensation fiber Long distance DWDM optimization CATV Systems ViaLite System Designer For complex designs where multiple DWDM products are required the System Designer tool is essential for predicting and validating performance results. The software uses a drag and drop approach from a pallet of products.
    [Show full text]
  • Nbs Technical Note 674 National Bureau of Standards
    NBS TECHNICAL NOTE 674 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, ,1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics - Electricity - Mechanics - Heat - Optical Physics - Center for Radiation Research: Nuclear Sciences; Applied Radiation - Laboratory Astrophysics * - Cryogenics ' - Electromagnetics - Time and Frequency *. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Standard Frequencies and Time Signals Wwv and Wwvh
    84. 20 U. S. DEPARTMENT OF COMMERCE Letter Circular June 1956 NATIONAL BUREAU OF STANDARDS LC 1023 BOULDER LABORATORIES (Supersedes BOULDER, COLORADO LC10Q9) STANDARD FREQUENCIES AND TIME SIGNALS WWV AND WWVH The National Bureau of Standards' Radio Stations WWV (in operation since 1923) and WWVH (since 1949) broadcast six widely used technical services: 1. STANDARD RADIO FREQUENCIES, 2. STANDARD AUDIO FREQUENCIES, 3. STANDARD TIME INTERVALS, 4. STANDARD MUSICAL PITCH, 5. TIME SIGNALS, 6. RADIO PROPAGATION FORECASTS. All inquiries concerning the technical radio broadcast services should be addressed to: National Bureau of Standards Boulder Laboratories, Boulder, Colorado. The radio bands in which the foregoing services are broadcast are: 2500 ±5 kc (2500 ±2 kc in Region 1); 5000 ±5 kc; 10, 000 ±5 kc; 15, 000 ±10 kc*» 20, 000 ±10 kc; 2.5, 000 ±10 kc. These bands were allotted by international agree- ment, in 1947, for exclusive standard-frequency-broadcast use. The National Bureau of Standards' radio stations are located as follows: WWV, Beltsville, Maryland (Box 182, Route 2, Lanham, Maryland); WWVH, Maui, Territory of Hawaii (Box 901, Puunene, Maui, T. H. ). Coordinates of the stations 38 °59'33" 76°50'52" are: WWV (lat. N. , long. W. ); WWVH (lat. 20°46'02" N. , long. 156°27'42" W. ). The WWV - WWVH broadcasts are a convenient means of transferring the national standard of frequency and time interval and making it readily avail- able throughout the United States and over much of the world. The broadcast program is shown schematically in Figure 1. 1. Standard Radio Frequencies : Station WWV broadcasts on standard radio frequencies of 2.
    [Show full text]
  • The Clock Mini-HOWTO
    The Clock Mini−HOWTO The Clock Mini−HOWTO Table of Contents The Clock Mini−HOWTO.................................................................................................................................1 Ron Bean, rbean@execpc.com...............................................................................................................1 1. Introduction..........................................................................................................................................1 2. How Linux Keeps Track of Time........................................................................................................1 3. Software...............................................................................................................................................1 4. Radio Clocks........................................................................................................................................1 1. Introduction..........................................................................................................................................1 1.1 Does Anybody Really Know What Time It Is?.................................................................................1 1.2 Where to Find Stuff: "The Usual Places"..........................................................................................2 1.3 Acknowledgements............................................................................................................................3 2. How Linux Keeps Track of Time........................................................................................................3
    [Show full text]
  • A Precision Radio Clock for WWV Transmissions David L
    Electrical Engineering Department University of Delaware Technical Report 97-8-1 August 1997 A Precision Radio Clock for WWV Transmissions David L. Mills Abstract This report describes a software program that functions as a radio clock using shortwave radio signals transmitted by National Institute of Standards and Technology (NIST) radio stations WWV and WWVH. Operated in conjunction with an inexpensive, fixed-frequency shortwave radio, it has nominal timing errors less than 125 µs when tracking one of the stations and fre- quency variations less than 0.5 parts-per-million (PPM) when not tracking either station. The clock produces an ASCII timecode that can be used to set the time of another device, such as a computer, as well as precision reference signals that can be used for other purposes, such as to drive laboratory test equipment. The primary motivation for this report is as an example and case study of optimum demodulator and decoder design using a maximum likelihood approach and matched filter, synchronous detec- tion and soft decision principles. The clock discipline is modelled as a Markov process, with prob- abilistic state transitions corresponding to a conventional time-of-century clock and the probabilities of received decimal digits. The result is a performance level which results in very high accuracy and reliability, even under conditions when the one-minute beep from the WWV/H signal, normally its most prominent feature, cannot be detected by ear with a sensitive communi- cations receiver. Keywords: radio-synchronized clock, digital signal processing, maximum likelihood decoding, matched filter receiver Sponsored by: DARPA Information Technology Office Contract DABT 63-95-C-0046, NSF Divi- sion of Network and Communications Research and Infrastructure Grant NCR 93-01002, North- eastern Center for Electrical Engineering Education Contract A303 276-93 i Table of Contents 1.
    [Show full text]