Elimination of Competing Hydrolysis and Coupling Side Reactions of A

Total Page:16

File Type:pdf, Size:1020Kb

Elimination of Competing Hydrolysis and Coupling Side Reactions of A Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution Ronan M Kelly, Hans Leemhuis, Henriëtte J Rozeboom, Niels van Oosterwijk, Bauke W. Dijkstra, Lubbert Dijkhuizen To cite this version: Ronan M Kelly, Hans Leemhuis, Henriëtte J Rozeboom, Niels van Oosterwijk, Bauke W. Dijkstra, et al.. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucan- otransferase by directed evolution. Biochemical Journal, Portland Press, 2008, 413 (3), pp.517-525. 10.1042/BJ20080353. hal-00478977 HAL Id: hal-00478977 https://hal.archives-ouvertes.fr/hal-00478977 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 21 Apr 2008 as manuscript BJ20080353 Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution Ronan M. Kelly1, Hans Leemhuis1, Henriëtte J. Rozeboom2, Niels van Oosterwijk2, Bauke W. Dijkstra2 and Lubbert Dijkhuizen1* 1Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands. 2Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. Running head: Removing enzyme side reactions. * Corresponding author. Tel: 31-50-3632150; Fax: 31-50-3632154; Email: [email protected] 1 Abbreviations: CGTase, cyclodextrin glucanotransferase; epPCR, error-prone polymerase chain reaction; GH13, glycoside hydrolase family 13; MBS, maltose binding site; Tabium, Thermoanaerobacterium thermosulfurigenes strain EM1; pNPG7, 4-nitrophenyl-Į-D- maltoheptaoside-4-6-O-ethylidene. Thermoanaerobacterium thermosulfurigenes To reduce the competing hydrolysis cyclodextrin glucanotransferase primarily reaction, while maintaining the cyclization catalyzes the formation of cyclic Į-(1,4)- activity, we applied directed evolution, linked oligosaccharides (cyclodextrins) from introducing random mutations throughout THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20080353 starch. This enzyme also possesses the cgt gene by error-prone PCR. Mutations unusually high hydrolytic activity as a side in two residues, Ser-77 and Trp-239, on the reaction, thought to be due to partial outer region of the active site, lowered the retention of ancestral enzyme function. This hydrolytic activity up to 15-fold with side reaction is undesirable since it produces retention of cyclization activity. In contrast, short saccharides that are responsible for the mutations within the active site could not breakdown of the cyclodextrins formed, thus lower hydrolytic rates, indicating an limitingStage the yield of cyclodextrins 2(a) produced. POST-PRINTevolutionary optimized role for cyclodextrin 1 Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. © 2008 The Authors Journal compilation © 2008 Biochemical Society Biochemical Journal Immediate Publication. Published on 21 Apr 2008 as manuscript BJ20080353 formation by residues within this region. maintaining primary catalytic function. The crystal structure of the most effective Subsequent functional analysis of various mutant, S77P, showed no alterations to the glucanotransferases from the superfamily of peptide backbone. However, subtle glycoside hydrolases also suggests a gradual conformational changes to the side chains of evolutionary progression of these enzymes active site residues had occurred, which may from a common ‘intermediate-like’ ancestor explain the increased cyclization/hydrolysis toward specific transglycosylation activity. ratio. This indicates that secondary effects of mutations located on the outer regions of the Keywords: protein evolution; amylase; catalytic site are required to lower the rates CGTase, protein stability; side reactions; of competing side reactions, whilst saccharide Introduction diversification from a common enzyme Enzymes are essentially a product of ancestor. All family members either evolution. Continuous evolution of enzymes hydrolyze or transglycosylate Į-glucosidic results in intermediates partially retaining linkages to produce Į-anomeric mono- and the initial ancestral function while catalysing oligo-saccharides; catalysis proceeds via a new function [1]. Over several evolutionary double displacement mechanism with initial phases, aided by selective pressure, new formation of a covalent glycosyl enzyme function dominates while ancestral intermediate [7]. It is therefore the type of function decreases to a mere side reaction acceptor substrate utilised in the second half [2-4]. This evolutionary phenomenon is of the reaction which determines enzyme clearly evident among members of the reaction specificity, a water molecule in the case of Į-amylases and a hydroxyl group of glycoside hydrolase family 13 (GH13), THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20080353 retaining a multitude of minor side reaction a sugar substrate for the glucanotransferases. specificities and activities [5]. Members of Despite highly specific primary activities of GH13 act on starch, glycogen and related GH13 enzymes, many glucanotransferase oligo- and polysaccharides, representing the enzymes also catalyze hydrolysis as a side largest family of glycoside hydrolases. Their reaction. Extensive analysis of cyclodextrin active site regions share high sequence glucanotransferases (CGTase) revealed that this side reaction has a considerable impact similarity embedded in a TIM (ȕ/Į)8 barrel structuralStage fold [6], indicating 2(a) evolutionary POST-PRINTon final product yields. CGTases primarily 2 Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. © 2008 The Authors Journal compilation © 2008 Biochemical Society Biochemical Journal Immediate Publication. Published on 21 Apr 2008 as manuscript BJ20080353 catalyze the glucanotransferase reaction of Ala-233 in Bacillus clarkii 7364 CGTase by cyclization, for the formation of circular Į- basic amino acids enhanced Ȗ-cyclodextrin (1,4)-linked oligosaccharides (cyclodextrins) forming activity over 4-fold in the neutral (Fig. 1) [8]. These enzymes also exhibit, to a pH range [13], while substitution of Tyr-54 lesser extent, Į-amylase-like activity, in the amylomaltase from Thermus hydrolysing starch into short linear aquaticus reduced hydrolytic activity but saccharides (Fig. 1). The build-up of short also enhanced cyclization activity saccharides from starch hydrolysis promotes significantly [14]. yet another CGTase side reaction, coupling To generate CGTase variants with a low (Fig. 1). In the coupling reaction hydrolytic activity, we applied directed cyclodextrin rings are cleaved and evolution, introducing random mutations transferred to (short) saccharide molecules to throughout the cgt gene by error-prone (ep) yield linear products [9]. While most PCR, followed by site-specific saturation CGTases generally exhibit low hydrolytic mutagenesis. Parallel screening for high rates, Thermoanaerobacterium thermosulf- cyclization and reduced hydrolytic activity urigenes strain EM1 (Tabium) CGTase on starch yielded three mutations, with no displays unusually high hydrolytic activity, direct interactions with substrate. The crystal but still low compared to Į-amylases [10]. structure of the most effective mutant, S77P, By determining the structural/molecular revealed subtle conformational changes of a factors responsible for the high hydrolytic network of amino acids at the active site rates of Tabium CGTase, we aimed at responsible for the strongly reduced side significantly reducing this side activity. reaction rates with retention of primary Reduced hydrolytic rates would effectively catalytic function. limit the breakdown of cyclodextrins via the Experimental Procedures coupling reaction, thus enhancing the enzyme’s applicability for industrial Bacterial strains, plasmids and protein THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20080353 applications [11]. Previous protein production – Escherichia coli strain engineering studies, aimed at improving the MC1061 was used for DNA manipulations cyclodextrin size specificity of CGTases, and library screening. CGTase proteins were have been of limited success. A double produced and purified using Bacillus subtilis mutant, Y89D/S146P, at the substrate strain DB104A carrying plasmid pCScgt-tt, binding sites of Bacillus circulans 251 as described [15]. Plasmid carrying strains CGTase, increased Į-cyclodextrin were grown on LB medium at 37q C in the productionStage two-fold [12]. 2(a)Replacement of POST-PRINTpresence of kanamycin (50 Pg/ml for E. coli 3 Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. © 2008 The Authors Journal compilation © 2008 Biochemical Society
Recommended publications
  • A Study of the Impact of Mazie SBE I on the [Alpha]-Polyglucan Produced in Synechocystis Sp
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 A study of the impact of mazie SBE I on the [alpha]- polyglucan produced in Synechocystis sp. strain PCC 6803 Shayani Deborah Nesaranjani Pieris Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Plant Biology Commons Recommended Citation Pieris, Shayani Deborah Nesaranjani, "A study of the impact of mazie SBE I on the [alpha]-polyglucan produced in Synechocystis sp. strain PCC 6803" (2007). Retrospective Theses and Dissertations. 15850. https://lib.dr.iastate.edu/rtd/15850 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A study of the impact of mazie SBE I on the -polyglucan produced in Synechocystis sp. strain PCC 6803 by Shayani Deborah Nesaranjani Pieris A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Martin H. Spalding, Major Professor Madan K. Bhattacharyya Jay -lin Jane David J. Oliver Paul M. Scott Iowa State University Ames, Iowa 200 7 Copyright © Shayani Deborah Nesara njani Pieris , 200 7. All right s reserved. UMI Number: 3294976 UMI Microform 3294976 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Function and Structure Studies of GH Family 31 and 97 \Alpha
    110610 (RV-17) Biosci. Biotechnol. Biochem., 75 (12), 110610-1–9, 2011 Award Review Function and Structure Studies of GH Family 31 and 97 -Glycosidases Masayuki OKUYAMA Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan Online Publication, December 7, 2011 [doi:10.1271/bbb.110610] A huge number of glycoside hydrolases are classified an evolutionary relationship of proteins in the family, into the glycoside hydrolase family (GH family) based from which it is often possible to extract information on on their amino-acid sequence similarity. The glycoside function and structure.3) Classification in a GH family hydrolases acting on -glucosidic linkage are in GH has, accordingly, become indispensable for research on family 4, 13, 15, 31, 63, 97, and 122. This review deals glycoside hydrolases. Glycoside hydrolases are also mainly with findings on GH family 31 and 97 enzymes. divided into two mechanistic classes, inverting and Research on two GH family 31 enzymes is described: retaining enzymes: with inversion or net retention of clarification of the substrate recognition of Escherichia anomeric configuration during the catalytic reaction.4) coli -xylosidase, and glycosynthase derived from Schiz- The stereochemical outcome is generally conserved in a osaccharomyces pombe -glucosidase. GH family 97 is GH family. The inverting mechanism proceeds via a an aberrant GH family, containing inverting and simple single displacement. Two functional groups, retainingAdvance glycoside hydrolases. The inverting View enzyme usually carboxyl groups, act as general acid and general in GH family 97 displays significant similarity to base catalysts. The general acid catalyst donates a proton retaining -glycosidases, including GH family 97 retain- to the departure aglycon, and the general base catalyst ing -glycosidase, but the inverting enzyme has no simultaneously deprotonates the incoming water mole- catalytic nucleophile residue.
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Q 297 Suppl USE
    The following supplement accompanies the article Atlantic salmon raised with diets low in long-chain polyunsaturated n-3 fatty acids in freshwater have a Mycoplasma dominated gut microbiota at sea Yang Jin, Inga Leena Angell, Simen Rød Sandve, Lars Gustav Snipen, Yngvar Olsen, Knut Rudi* *Corresponding author: [email protected] Aquaculture Environment Interactions 11: 31–39 (2019) Table S1. Composition of high- and low LC-PUFA diets. Stage Fresh water Sea water Feed type High LC-PUFA Low LC-PUFA Fish oil Initial fish weight (g) 0.2 0.4 1 5 15 30 50 0.2 0.4 1 5 15 30 50 80 200 Feed size (mm) 0.6 0.9 1.3 1.7 2.2 2.8 3.5 0.6 0.9 1.3 1.7 2.2 2.8 3.5 3.5 4.9 North Atlantic fishmeal (%) 41 40 40 40 40 30 30 41 40 40 40 40 30 30 35 25 Plant meals (%) 46 45 45 42 40 49 48 46 45 45 42 40 49 48 39 46 Additives (%) 3.3 3.2 3.2 3.5 3.3 3.4 3.9 3.3 3.2 3.2 3.5 3.3 3.4 3.9 2.6 3.3 North Atlantic fish oil (%) 9.9 12 12 15 16 17 18 0 0 0 0 0 1.2 1.2 23 26 Linseed oil (%) 0 0 0 0 0 0 0 6.8 8.1 8.1 9.7 11 10 11 0 0 Palm oil (%) 0 0 0 0 0 0 0 3.2 3.8 3.8 5.4 5.9 5.8 5.9 0 0 Protein (%) 56 55 55 51 49 47 47 56 55 55 51 49 47 47 44 41 Fat (%) 16 18 18 21 22 22 22 16 18 18 21 22 22 22 28 31 EPA+DHA (% diet) 2.2 2.4 2.4 2.9 3.1 3.1 3.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 4 4.2 Table S2.
    [Show full text]
  • STUDY of STARCH DEBRANCHING ENZYMES in DEVELOPING WHEAT KERNELS a Thesis Submitted to the College of Graduate Studies and Resear
    STUDY OF STARCH DEBRANCHING ENZYMES IN DEVELOPING WHEAT KERNELS A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Department of Biochemistry University of Saskatchewan Saskatoon By Supatcharee Netrphan Spring 2002 © Copyright Supatcharee Netrphan, 2002. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to: Head of the Department of Biochemistry University of Saskatchewan 107 Wiggins Road Saskatoon, Saskatchewan S7N 5E5 i ABSTRACT Starch debranching enzymes, which specifically hydrolyse a-1,6­ glucosidic bonds in glucans containing both a-1,4 and a-1,6 linkages, are classified into two types: isoamylase (EC.
    [Show full text]
  • Neopullulanase 13A, Geobacillus Stearothermophilus Gsnep13a
    Neopullulanase 13A, Geobacillus stearothermophilus Gs Nep13A (CBM34-GH13) Catalogue number: CZ08671 , 0,5 mg CZ08672 , 3 × 0,5 mg Description Storage temperature Gs Nep13A (CBM34-GH13), E.C. number 3.2.1.135, is an enzyme This enzyme should be stored at -20 °C. that participates in the hydrolysis of pullulan to panose (6-α-D- glucosylmaltose) from Geobacillus stearothermophilus . Recombinant Gs Nep13A (CBM34-GH13), purified from Escherichia Substrate specificity coli , is a modular family 13 Glycoside Hydrolase (GH13) with an N- terminal family 34 Carbohydrate Binding Module (CBM34) Gs Nep13A (CBM34-GH13) hydrolyses β-CD, starch and pullulan. (www.cazy.org). The enzyme is provided in 35 mM NaHepes buffer, pH 7.5, 750 mM NaCl, 200 mM imidazol, 3.5 mM CaCl 2 and 25% (v/v) glycerol, at a 0,5 mg/mL concentration. Bulk quantities Temperature and pH optima of this product are available on request. The pH optimum for enzymatic activity is 6 while temperature optimum is 55 °C. Electrophoretic Purity Gs Nep13A (CBM34-GH13) purity was determined by sodium Enzyme activity dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by BlueSafe staining (MB15201) (Figure 1). Substrate specificity and kinetic properties of Gs Nep13A (CBM34- GH13) are described in the reference provided below. Follow the instructions described in the paper for the implementation of enzyme assays and to obtain values of specific activity. To measure catalytic activity of GHs, quantify reducing sugars released from polysaccharides through the method described by Miller (1959; Anal. Chem. 31, 426-428). Reference Cheong et al. Biotechnol Appl Biochem. 2002 Feb.35(Pt 1):27-34.
    [Show full text]
  • Identification of the Sequence Motif of Glycoside Hydrolase 13 Family Members
    open access www.bioinformation.net Hypothesis Volume 6(2) Identification of the sequence motif of glycoside hydrolase 13 family members Vikash Kumar* Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Vikash kumar - Email: [email protected]; *Corresponding author Received December 17, 2010; Accepted February 07, 2011; Published March 26, 2011 Abstract: A bioinformatics analysis of sequences of enzymes of the glycoside hydrolase (GH) 13 family members such as α-amylase, cyclodextrin glycosyltransferase (CGTase), branching enzyme and cyclomaltodextrinase has been carried out in order to find out the sequence motifs that govern the reactions specificities of these enzymes by using hidden Markov model (HMM) profile. This analysis suggests the existence of such sequence motifs and residues of these motifs constituting the –1 to +3 catalytic subsites of the enzyme. Hence, by introducing mutations in the residues of these four subsites, one can change the reaction specificities of the enzymes. In general it has been observed that α -amylase sequence motif have low sequence conservation than rest of the motifs of the GH13 family members. Keywords: α-Amylases; Glycoside hydrolase family 13; Sequence motif; Reaction specificity; Substrate specificity; HMM profile. Background: enzymes with mixed specificities of α-amylase, cyclomaltodextrinase and A large group of “Carbohydrate Active enzymes” that hydrolyse neopullulanase [12]. Currently, the catalytic triad residues Asp206, Glu230 and polysaccharides have been divided into the glycoside hydrolase (GH) families Asp297 seem to be the only residues that are absolutely invariant among all the of the CAZy database [1] based on their amino acid sequence similarity. GH-H clan members [11].
    [Show full text]
  • The Concept of the Α-Amylase Family
    International Symposium on Extremophiles and Their Applications 2005 The concept of the !-amylase family: a rational tool for interconverting glucanohydrolases/glucanotransferases, and their specificities Takashi Kuriki Biochemical Research Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan Email: [email protected] Abstract Neopullulanase catalyzes the hydrolysis of !-1,4- and !-1,6-glucosidic linkages, as well as transglycosylation to form !-1,4- and !-1,6-glucosidic linkages. Based on the series of experimental results using the neopullulanase, we pointed out the same catalytic machinery and the common catalytic mechanism of the enzymes that catalyze these four reactions, and thus, proposed and defined the concept of the !-amylase family. Mutational and structural analyses provided the conclusive proof that one active center of neopullulanase participate in all four reactions. We have been trying to interconvert glucanohydrolases/glucanotransferases, and their specificities and create tailor-made industrially useful enzymes based on the concept of the !-amylase family. We engineered Thermus amylomaltase to essentially erase hydrolytic activity and created perfect 4-!-glucanotransferase for the industrial production of cycloamylose. Keywords; !-amylase family, neopullulanase, catalytic mechanism, catalytic machinery, protein engineering 1. Introduction All enzymes known to date have individual EC number based on the recommendation of the International Union of Biochemistry and Molecular Biology (IUBMB). This enzyme classification is based on two factors, the reaction catalyzed and the substrate specificity. This is consistent with the “key-lock” hypothesis postulated by Emil Fischer in 1884. It has been estimated that more than 25,000 enzymes exist in nature. However, Chothia [1] speculated that the number of basic topological motifs of protein is most likely limited to around one thousand.
    [Show full text]
  • Prebiotic Properties of Bacillus Coagulans MA-13
    Aulitto et al. Microb Cell Fact (2021) 20:71 https://doi.org/10.1186/s12934-021-01553-y Microbial Cell Factories RESEARCH Open Access Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase Martina Aulitto1,2, Andrea Strazzulli1,3, Ferdinando Sansone1, Flora Cozzolino4,5, Maria Monti4,5, Marco Moracci1,3,6, Gabriella Fiorentino1,7, Danila Limauro1,7, Simonetta Bartolucci1 and Patrizia Contursi1,3,7* Abstract Background: The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consump- tion. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifcally, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results: In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identi- fed as β-galactosidase (GH42) and α-galactosidase (GH36), respectively.
    [Show full text]
  • Cazymes Catalogue 2021
    cazymes 2021 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: 2021 NZYTech NZYTech 2 Visit the Online Store www.nzytech.com Newsletter NZYWallet Instantaneous Quotes Subscribe our newsletter to receive NZYWallet is a prepaid account Do you need an urgent quote? Just awesome news and promotions. that oers the flexibility you need add your products to Cart, proceed to focus on your research. With to Checkout, select quote and it’s NZYWallet you can buy any done! product from our Online Store, check your up-to-date balance and track your latest orders. Contact our customer service at [email protected] or your local sales representative for more information. Follow us: cazymes 3 4 2021 NZYTech NZYTech OVERVIEW 8 GLYCOSIDE HYDROLASES 10 Acetylgalactosaminidases Acetylglucosaminidases Agarases Amylases @ a glance Amylomaltases Arabinanases Arabinofuranosidases Arabinopyranosidases Arabinoxylanases Carrageenases Cellobiohydrolases Cellodextrinases Cellulases Chitinases Chitosanases Dextranases Fructanases Fructofuranosidases
    [Show full text]
  • Molecular Cloning and Heterologous Expression of the Isopullulanase Gene from Aspergillus Niger A.T.C.C
    Biochem. J. (1997) 323, 757–764 (Printed in Great Britain) 757 Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642 Hiroyoshi AOKI, Yopi and Yoshiyuki SAKANO* Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183, Japan Isopullulanase (IPU) from Aspergillus niger A.T.C.C. (American Penicillium minioluteum (61%) and Arthrobacter sp. (56%). Type Culture Collection) 9642 hydrolyses pullulan to isopanose. When the ipuA gene was expressed in Aspergillus oryzae, the IPU is important for the production of isopanose and is used in expressed protein (recombinant IPU) had IPU activity and was the structural analysis of oligosaccharides with α-1,4 and α-1,6 immunologically reactive with antibodies raised against native glucosidic linkages. We have isolated the ipuA gene encoding IPU. The substrate specificity, thermostability and pH profile of IPU from the filamentous fungi A. niger A.T.C.C. 9642. The recombinant IPU were identical with those of the native enzyme, ipuA gene encodes an open reading frame of 1695 bp (564 amino but recombinant IPU (90 kDa) was larger than the native enzyme acids). IPU contained a signal sequence of 19 amino acids, and (69–71 kDa). After deglycosylation with peptide-N-glycosidase the molecular mass of the mature form was calculated to be F, the deglycosylated recombinant IPU had the same molecular 59 kDa. IPU has no amino-acid-sequence similarity with the mass as deglycosylated native enzyme (59 kDa). This result other pullulan-hydrolysing enzymes, which are pullulanase, suggests that the carbohydrate chain of recombinant IPU differed neopullulanase and glucoamylase.
    [Show full text]