Novel Transcriptional Targets of the SRY-HMG Box Transcription Factor SOX4 Link Its Expression to the Development of Small Cell Lung Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Novel Transcriptional Targets of the SRY-HMG Box Transcription Factor SOX4 Link Its Expression to the Development of Small Cell Lung Cancer Published OnlineFirst November 14, 2011; DOI: 10.1158/0008-5472.CAN-11-3506 Cancer Molecular and Cellular Pathobiology Research Novel Transcriptional Targets of the SRY-HMG Box Transcription Factor SOX4 Link Its Expression to the Development of Small Cell Lung Cancer Sandra D. Castillo1, Ander Matheu2, Niccolo Mariani1, Julian Carretero3, Fernando Lopez-Rios4, Robin Lovell-Badge2, and Montse Sanchez-Cespedes1 Abstract The HMG box transcription factor SOX4 involved in neuronal development is amplified and overexpressed in a subset of lung cancers, suggesting that it may be a driver oncogene. In this study, we sought to develop this hypothesis including by defining targets of SOX4 that may mediate its involvement in lung cancer. Ablating SOX4 expression in SOX4-amplified lung cancer cells revealed a gene expression signature that included genes involved in neuronal development such as PCDHB, MYB, RBP1, and TEAD2. Direct recruitment of SOX4 to gene promoters was associated with their upregulation upon ectopic overexpression of SOX4. We confirmed upregulation of the SOX4 expression signature in a panel of primary lung tumors, validating their specific response by a comparison using embryonic fibroblasts from Sox4-deficient mice. Interestingly, we found that small cell lung cancer (SCLC), a subtype of lung cancer with neuroendocrine characteristics, was generally characterized by high levels of SOX2, SOX4, and SOX11 along with the SOX4-specific gene expression signature identified. Taken together, our findings identify a functional role for SOX genes in SCLC, particularly for SOX4 and several novel targets defined in this study. Cancer Res; 72(1); 1–11. Ó2011 AACR. Introduction on chromosome 6p22, containing the SOX4 gene, which was expressed at very high levels and was the best candidate for an As with other types of cancer, lung cancer is undergoing a oncogene in the amplicon (2). therapeutic revolution characterized by the identification of The SOX4 gene belongs to the SOX family, which is divided novel driver oncogenes and the generation of drugs that inhibit into 8 groups, A to H, according to protein identity (3). Sox4, their activity in a very specific manner. The success of erloti- Sox11, and Sox12 form the Sox-C group, sharing a high degree of nib/gefitinib in epidermal growth factor receptor (EGFR)- identity in the high-mobility group domain, and in a group- mutant tumors and crizotinib in tumors carrying a transloca- specific transactivation domain (4). Sox4 is predominantly tion of the ALK oncogene are some of the current paradigms expressed during embryonic development in the heart, central (1). Because few tumors carry alterations of these genes, effort nervous system, lung and thymus (5–7). SOX4 protein levels are is required to identify additional targetable oncogenes. We increased in several types of carcinoma (8–11), and knocking previously carried out a wide-ranging DNA copy number down SOX4 induces apoptosis and growth suppression in analysis of lung cancer cell lines and identified an amplicon cancer cells (12–14). Providing further evidence of the onco- genic potential of SOX4, we reported that its overexpression in NIH3T3 cells increases the number of foci induced by the 1 Authors' Affiliations: Genes and Cancer Group, Cancer Epigenetics and mutant RHOA-Q63L (2). In addition, several independent Biology Program- (PEBC), Bellvitge Biomedical Research Institute-IDI- BELL, Barcelona, Spain; 2Division of Stem Cell Biology and Developmental studies have shown that Sox4 (also known as ecotropic viral Genetics, MRC National Institute for Medical Research, London, United integration site 16, Evi16) is a frequent target of retroviral Kingdom; 3Department of Physiology, Faculty of Medicine and Odontol- ogy, University of Valencia; and 4Hospital Universitario Madrid-Sanchi- insertional mutagenesis, leading to neoplastic transformation narro, Laboratorio Dianas Terapeuticas, Madrid, Spain in murine hematopoietic cells (15–18). In the particular case of Note: Supplementary data for this article are available at Cancer Research lung cancer, we previously reported the presence of a high level Online (http://cancerres.aacrjournals.org/). of SOX4 amplification in a subset of lung primary tumors and cancer cell lines (2). The relevance of SOX4 to lung cancer Array data deposited in the Gene Expression Omnibus (GEO) under accession number GSE31612. development has also been observed by others. A meta-analysis examining the transcriptional profiles of human tumors found Corresponding Author: Montse Sanchez-Cespedes, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute- SOX4 to be one of 64 genes uniquely upregulated in cancer IDIBELL 08908, Hospitalet de Llobregat, Barcelona 08907, Spain. Phone: thereby making it part of a general gene expression signature of 34-932-607132; Fax: 34-932-607219; E-mail: [email protected] cancer (19). Lung cancer was among the tumors with the doi: 10.1158/0008-5472.CAN-11-3506 greatest levels of SOX4 expression. In addition, Sox4 was among Ó2011 American Association for Cancer Research. the set of genes overexpressed in the lungs of c-myc transgenic www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on October 5, 2021. © 2011 American Association for Cancer Research. Published OnlineFirst November 14, 2011; DOI: 10.1158/0008-5472.CAN-11-3506 Castillo et al. mice, and c-myc was also found to be one of the transcription Gene expression microarrays and real-time quantitative factors with overrepresented Sox4-binding sites among the set PCRs of overexpressed genes (20). The mRNA was extracted using conventional methods, and 1 SOX4 is involved in neural development and the main- mg of it was amplified from each sample and used for gene tenance of some stem cell types (21, 22). Recent studies expression microarray analysis. Universal Human Reference have reported SOX4 to be a direct TGF-beta target that RNA (P/N 740000; Stratagene), was used as reference for activates SOX2 transcription while retaining the stem cell hybridization and analysis. For labeling we used the commer- properties of glioma-initiating cells (21). In addition, in cial Two-Color Microarray-Based Gene Expression Analysis Kit normal hair follicles, Sox4 is expressed in the developing (version 5.5). MMLV-RT retrotranscription of sample from a T7 hair germ (23). promoter primer was followed by a T7 RNA polymerase- In spite of this, and although SOX4 was one of the first catalyzed in vitro transcription reaction in the presence of members of the SOX family to be isolated and characterized, either Cy3-CTP or Cy5-CTP fluorophores. Cy3 labeling was including the demonstration that it has separable DNA-bind- used for the reference sample. Hybridization was carried out on ing and transactivation domains, our present knowledge of the the Whole Human Genome Microarray (4 Â 44 K), scanned genes controlled by SOX4 activity is scarce. This paper reports with a G2505B DNA microarray scanner and quantified using on the role of SOX4 in human lung carcinogenesis, focusing Agilent Feature Extraction Software (version 9.5; Agilent). especially on identifying novel targets of SOX4 transcriptional Fluorescence intensity from each array element was subtracted activity. from the local background and data normalized as previously described (24). We further selected transcripts that fulfilled the Materials and Methods following criteria: (i) repressed at least 2 times in the H522Tr- shSOX4-1 at 48 and 96 hours after induction of shSOX4 relative Cancer cell lines and primary tumors to the level at 0 hour and (ii) no changes in gene expression Cancer cell lines were obtained from the American Type between the parental H522 and the H522Tr-shSOX4-1. The Culture Collection and grown under recommended condi- mRNA and genomic DNA were measured by real-time quan- tions.DNAandRNAfromadditionallungcancercelllines titative PCR. DNase-treated RNA was reverse-transcribed. The used for real-time quantitative reverse transcriptase (RT) cDNA and genomic DNA were amplified using an ABI Prism PCR were kindly provided by Luis M. Montuenga and Ruben 7900 Sequence detector (Applied Biosystems), and levels of Pio of the Centro de Investigacion Medica Aplicada (CIMA), genes were measured by SYBR green real-time PCR. Reactions University of Navarra, Spain, and Jun Yokota, National were carried out in triplicate. As controls we used the human Cancer Center Research Institute, Tokyo, Japan. Fresh frozen GAPDH, B-ACTIN, and TATA box–binding protein (TBP)to lung primary tumors were provided by the CNIO Tumour correct for inter-individual/tumor variations. The primer Bank Network, CNIO, Spain, and were selected as previously sequences used are included in Supplementary Table S2. described (24). Antibodies, Western blot analysis, and immunostaining Expression plasmids and reporters For Western blot analysis, cells were scraped from the dishes We stably transfected the H522 cell line with a Tet repressor into the lysis buffer. A total of 25 mg of total protein was (TetR) expression construct, pCMB1b-TrS, kindly provided by separated by SDS-PAGE and blotted with rabbit anti-SOX4 M.V. de Wetering (Hubrecht Institute, Utrecht, The Nether- (A574) 1:5,000 (CS-129-100, Diagenode), mouse anti-SOX2 lands) using hygromycin selection. We examined TetR activity 1:2,500 (R&D Systems); rabbit anti-NSE 1:1,000 (Abcam), or by transfecting the cells with the pcDNA4/TO/Luc construct mouse anti-GAPDH. The secondary goat anti-mouse-IgG:HRP that expressed the firefly luciferase
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • 0008-5472.CAN-11-3506.Full-Text.Pdf
    Author Manuscript Published OnlineFirst on November 14, 2011; DOI: 10.1158/0008-5472.CAN-11-3506 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer Sandra D. Castillo1, Ander Matheu2, Niccolo Mariani1, Julian Carretero3, Fernando Lopez- Rios4, Robin Lovell-Badge2 and Montse Sanchez-Cespedes1* Authors´Affiliations:1Genes and Cancer Group, Cancer Epigenetics and Biology Program- PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain. 2Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, UK. 3Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Spain. 4Hospital Universitario Madrid-Sanchinarro, Laboratorio Dianas Terapeuticas, Madrid, Spain Running title: Novel SOX4 targets and small cell lung cancer development Keywords: SCLC, SOX4, SOX11, neuroendocrine lung tumors, oncogene Disclosure of potential conflict of interest: No conflicts of interest were disclosed. Word count: 5,428 Total number of figures and tables: 6 Accession number: Array data deposited in the Gene Expression Omnibus (GEO) under accession number GSE31612. *Corresponding Author: Montse Sanchez-Cespedes, Cancer Epigenetics and Biology Program-PEBC (IDIBELL) 08908, Hospitalet de Llobregat, Barcelona, Spain; Tel: +34932607132, Fax: +34932607219, Email: [email protected] 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 14, 2011; DOI: 10.1158/0008-5472.CAN-11-3506 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder
    INVESTIGATION A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder Aparna Prasad,* Daniele Merico,* Bhooma Thiruvahindrapuram,* John Wei,* Anath C. Lionel,*,† Daisuke Sato,* Jessica Rickaby,* Chao Lu,* Peter Szatmari,‡ Wendy Roberts,§ Bridget A. Fernandez,** Christian R. Marshall,*,†† Eli Hatchwell,‡‡ Peggy S. Eis,‡‡ and Stephen W. Scherer*,†,††,1 *The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto M5G 1L7, Canada, †Department of Molecular Genetics, University of Toronto, Toronto M5G 1L7, Canada, ‡Offord Centre for Child Studies, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8P 3B6, § Canada, Autism Research Unit, The Hospital for Sick Children, Toronto M5G 1X8, Canada, **Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada, ††McLaughlin Centre, University of Toronto, Toronto M5G 1L7, Canada, and ‡‡Population Diagnostics, Inc., Melville, New York 11747 ABSTRACT The identification of rare inherited and de novo copy number variations (CNVs) in human KEYWORDS subjects has proven a productive approach to highlight risk genes for autism spectrum disorder (ASD). A rare variants variety of microarrays are available to detect CNVs, including single-nucleotide polymorphism (SNP) arrays gene copy and comparative genomic hybridization (CGH) arrays. Here, we examine a cohort of 696 unrelated ASD number cases using a high-resolution one-million feature CGH microarray, the majority of which were previously chromosomal genotyped with SNP arrays. Our objective was to discover new CNVs in ASD cases that were not detected abnormalities by SNP microarray analysis and to delineate novel ASD risk loci via combined analysis of CGH and SNP array cytogenetics data sets on the ASD cohort and CGH data on an additional 1000 control samples.
    [Show full text]
  • Supplementary Table 1. List of Genes Up-Regulated in Abiraterone-Resistant Vcap Xenograft Samples PIK3IP1 Phosphoinositide-3-Kin
    Supplementary Table 1. List of genes up-regulated in abiraterone-resistant VCaP xenograft samples PIK3IP1 phosphoinositide-3-kinase interacting protein 1 TMEM45A transmembrane protein 45A THBS1 thrombospondin 1 C7orf63 chromosome 7 open reading frame 63 OPTN optineurin FAM49A family with sequence similarity 49, member A APOL4 apolipoprotein L, 4 C17orf108|LOC201229 chromosome 17 open reading frame 108 | hypothetical protein LOC201229 SNORD94 small nucleolar RNA, C/D box 94 PCDHB11 protocadherin beta 11 RBM11 RNA binding motif protein 11 C6orf225 chromosome 6 open reading frame 225 KIAA1984|C9orf86|TMEM14 1 KIAA1984 | chromosome 9 open reading frame 86 | transmembrane protein 141 KIAA1107 TLR3 toll-like receptor 3 LPAR6 lysophosphatidic acid receptor 6 KIAA1683 GRB10 growth factor receptor-bound protein 10 TIMP2 TIMP metallopeptidase inhibitor 2 CCDC28A coiled-coil domain containing 28A FBXL2 F-box and leucine-rich repeat protein 2 NOV nephroblastoma overexpressed gene TSPAN31 tetraspanin 31 NR3C2 nuclear receptor subfamily 3, group C, member 2 DYNC2LI1 dynein, cytoplasmic 2, light intermediate chain 1 C15orf51 dynamin 1 pseudogene SAMD13 sterile alpha motif domain containing 13 RASSF6 Ras association (RalGDS/AF-6) domain family member 6 ZNF167 zinc finger protein 167 GATA2 GATA binding protein 2 NUDT7 nudix (nucleoside diphosphate linked moiety X)-type motif 7 DNAJC18 DnaJ (Hsp40) homolog, subfamily C, member 18 SNORA57 small nucleolar RNA, H/ACA box 57 CALCOCO1 calcium binding and coiled-coil domain 1 RLN2 relaxin 2 ING4 inhibitor of
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]
  • Ventricular Tissue Culture Model for Cardiovascular
    VENTRICULAR TISSUE CULTURE MODEL FOR CARDIOVASCULAR RESEARCH KRISTY PURNAMAWATI (B. Eng., NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2015 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been previously submitted for any degree in any university. _________________________ Kristy Purnamawati 06 May 2015 ii ACKNOWLEDGEMENTS The completion of this thesis will not be possible without the kind and generous help from so many people both in Singapore and Germany. I wish to express my most sincere gratitude to my supervisors and mentors Dr. William Sun, Prof. E. Birgitte Lane, A/Prof. Cao Tong, Prof. Dr. Wolfram H. Zimmermann, Dr. Poh Loong Soong and Dr. Malte Tiburcy for their invaluable guidance, intellectual input and constant support throughout the course of my study. My special thanks go out to the Zimmermann lab in Göttingen for welcoming me to be part their lab for a good portion of the project. I would also like to thank A*STAR Graduate Academy (AGA), Deutsches Zentrum für Herz-Kreislauf-Forschung E.V. (DZHK) and Deutsche Forschungsgemeinschaft (DFG) for their financial support, as well as NGS, NUS for facilitating the multitudes of change that occurred throughout this PhD journey. This work was completed in 27 months, from conception to last day of data collection. I am very grateful to my family and friends for their love and encouragement.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Human-Specific Transcriptional Networks in The
    Human-Specific Transcriptional Networks in the Brain Genevieve Konopka, University of California Tara Friedrich, University of California Jeremy Davis-Turak, University of California Kellen Winden, University of California Michael C. Oldham, University of California Fuying Gao, University of California Leslie Chen, University of California Guang-Zhong Wang, University of Texas Rui Luo, University of California Todd M Preuss, Emory University Only first 10 authors above; see publication for full author list. Journal Title: Neuron Volume: Volume 75, Number 4 Publisher: Elsevier (Cell Press) | 2012-08-23, Pages 601-617 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1016/j.neuron.2012.05.034 Permanent URL: https://pid.emory.edu/ark:/25593/s917g Final published version: http://dx.doi.org/10.1016/j.neuron.2012.05.034 Copyright information: © 2012 Elsevier Inc. Published by Elsevier Inc. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/). Accessed September 30, 2021 11:24 AM EDT NIH Public Access Author Manuscript Neuron. Author manuscript; available in PMC 2013 August 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuron. 2012 August 23; 75(4): 601–617. doi:10.1016/j.neuron.2012.05.034. Human-specific transcriptional networks in the brain Genevieve Konopka1,6, Tara Friedrich1, Jeremy Davis-Turak1, Kellen Winden1, Michael C. Oldham7, Fuying Gao1, Leslie Chen1, Guang-Zhong Wang6, Rui Luo2, Todd M. Preuss5, and Daniel H. Geschwind1,2,3,4 1Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
    [Show full text]
  • Functional Test of PCDHB11, the Most Human-Specific Neuronal Surface Protein Guilherme Braga De Freitas, Rafaella Araújo Gonçalves and Matthias Gralle*
    de Freitas et al. BMC Evolutionary Biology (2016) 16:75 DOI 10.1186/s12862-016-0652-x RESEARCHARTICLE Open Access Functional test of PCDHB11, the most human-specific neuronal surface protein Guilherme Braga de Freitas, Rafaella Araújo Gonçalves and Matthias Gralle* Abstract Background: Brain-expressed proteins that have undergone functional change during human evolution may contribute to human cognitive capacities, and may also leave us vulnerable to specifically human diseases, such as schizophrenia, autism or Alzheimer’s disease. In order to search systematically for those proteins that have changed the most during human evolution and that might contribute to brain function and pathology, all proteins with orthologs in chimpanzee, orangutan and rhesus macaque and annotated as being expressed on the surface of cells in the human central nervous system were ordered by the number of human-specific amino acid differences that are fixed in modern populations. Results: PCDHB11, a beta-protocadherin homologous to murine cell adhesion proteins, stood out with 12 substitutions and maintained its lead after normalizing for protein size and applying weights for amino acid exchange probabilities. Human PCDHB11 was found to cause homophilic cell adhesion, but at lower levels than shown for other clustered protocadherins. Homophilic adhesion caused by a PCDHB11 with reversion of human- specific changes was as low as for modern human PCDHB11; while neither human nor reverted PCDHB11 adhered to controls, they did adhere to each other. A loss of function in PCDHB11 is unlikely because intra-human variability did not increase relative to the other human beta-protocadherins. Conclusions: The brain-expressed protein with the highest number of human-specific substitutions is PCDHB11.
    [Show full text]
  • FLAME: a Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446692; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. FLAME: a web tool for functional and literature enrichment analysis of multiple gene lists Foteini Thanati1,†, Evangelos Karatzas1,†, Fotis A. Baltoumas1, Dimitrios J. Stravopodis2, Aristides G. Eliopoulos3,4,5, Georgios A. Pavlopoulos1,4,* 1 Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Athens, Greece 2 Department of Biology, National and Kapodistrian University of Athens, Athens, Greece 3 Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 4 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 5 Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece †Equally contributing authors *To whom correspondence should be addressed. Tel: +30-210-9656310; Fax: +30-210-9653934; Email: [email protected] Present Address: Georgios A. Pavlopoulos, Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, Vari, 16672, Greece ABSTRACT Functional enrichment is a widely used method for interpreting experimental results by identifying classes of proteins/genes associated with certain biological functions, pathways, diseases or phenotypes. Despite the variety of existing tools, most of them can process a single list per time, thus making a more combinatorial analysis more complicated and prone to errors. In this article, we present FLAME, a web tool for combining multiple lists prior to enrichment analysis.
    [Show full text]