Th e times they are a-changin’:S. Grozeva driving forces & N. of Simov recent additions(Eds) 2008 to the fauna of Austria 309 ADVANCES IN HETEROPTERA RESEARCH Festschrift in Honour of 80th Anniversary of Michail Josifov, pp. 309-326. © Pensoft Publishers Sofi a–Moscow

Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria *

W. Rabitsch

Federal Environment Agency, Spittelauer Lände 5, A-1090 Wien, Austria. E-mail: [email protected] Department of Evolutionary Biology, University of Vienna, Althanstraße 14, A-1090 Wien, Austria. E-mail: [email protected]

ABSTRACT

During the past approximate 25 years 84 Heteroptera species were published for the fi rst time for Austria. Th ese species account for 9.4 % of the 896 Heteroptera species currently known to occur in Austria and means that species were added at a rate of more than 3 per year, including previously overlooked species. Two thirds of the species (68 %) were overlooked for taxonomic reasons or because of their cryptic appearance or biol- ogy; the remaining species (32 %) are considered new arrivals. Excluding single records, 18 species (21 %) are considered established new arrivals. Th is is a rate of 0.72 species establishing per year. Most of these species are generally expanding their distribution and increasing in abundance in Austria and elsewhere in Europe and most species reached Austria probably due to current favourable climatic conditions (14 species), followed by species introduced with ornamental plants or transport (4 species). Th e dominance of arboricolous, phytophagous species with a high degree of host plant specialization cor- roborates previous fi ndings. Th e native region of 14 of these 18 species is the Mediter- ranean, resulting in a current “Mediterranization” of the Heteroptera fauna of Austria. Such a movement probably has happened before (1932–1940), but most of the species failed to establish in Central Europe. Most species arrive in the north-east of Austria, which may be a preferred invasion gateway for southeast-mediterranean species, due to the barrier eff ect of the Alps. Beside climatic factors, habitat change – particularly

* Th is paper is dedicated to Michail Josifov at his 80th birthday and his stimulating biogeographical and taxonomic contributions to the Heteroptera of Europe. 310 W. Rabitsch availability of ornamental plants in urban settings – is considered an important driving force of recent additions to the Heteroptera inventory of Austria. Further monitoring of Heteroptera occurrence in Austria is needed to detect and verify this pattern.

Keywords: Austria, climatic change, non-native species, Heteroptera

INTRODUCTION

Th e accelerating pace of human impact on the environment in the last decades has caused a multitude of alterations, such as changes of element cycling and of climate as well as a dramatic decline of biodiversity (Sala et al. 2000; Chapin et al. 2001). However, at the local scale, biodiversity in terms of species numbers can rise due to man-made in- troductions of species beyond natural boundaries. Th ese non-native (alien) species may harm native species or have economic cost; non-natives are considered second only to land use change as driving force for loss of global biodiversity (Vitousek et al. 1997; Wilcove et al. 1998) and are responsible for an economic loss equal to about 5 % of the world GNP (Pimentel 2002). Several driving forces are responsible for changes in the fauna of a given area. Beside anthropogenic forces (intentional release, unintentional introduction with plant mate- rial or as stowaways with goods or stored products), there are natural biotic and abiotic forces (the edges of species ranges are not stable and natural progression and regression of ranges do occur) and – of course – an interaction of both (e.g. Dukes & Mooney 1999; Gaston 2003). It is, therefore, diffi cult to uncouple the driving forces of range changes, but climatic change is clearly one of the most important (e.g. Parmesan 1996, 2006; Cannon 1998; Parmesan et al. 1999; Burton 2001; McCarty 2001; Hill et al. 2002; Walther et al. 2002, 2005; Root et al. 2003). In this paper, new additions to the Heteroptera fauna of Austria over the past ap- proximate 25 years are summarized and discussed in the light of their possible driving forces of change. A descriptive, not statistically based, prediction for a future scenario is made.

METHODS

Th e available literature on the Heteroptera of Austria (see Rabitsch 2006) was checked for new species records since and including the seminal paper of Melber et al. (1991), considering records back to 1982. Th e present study therefore deals with new additions to the species inventory for approximately the last 25 years. While collating data for a critical check-list of Austrian species (Rabitsch 2004a, 2005b) and a red list of endangered species of Lower Austria (Rabitsch 2007), voucher specimens were verifi ed in several museum and private collections (Burgenländisches Landesmuseum, Eisenstadt; Kärntner Landesmuseum, Klagenfurt; Muséum d`Histoire Naturelle, Geneva; Naturhistorisches Museum, Wien; Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 311

Niederösterreichisches Landesmuseum, St. Pölten; Oberösterreichisches Landesmuseum / Biologiezentrum, Linz; Zoologisches Museum, Universität Hamburg; Zoologische Staatssa- mmlung, München). Altogether, approximately 40,000 data entries were analysed. Species were assigned to diff erent categories as to the reason for their addition to the national list (new arrival or overlooked) as well as the likely driving force for arrival where appropriate: (i) species overlooked due to taxonomic changes, (ii) species over- looked due to cryptic biology (including rare species), (iii) new arrivals, probably due to climatic change, (iv) new arrivals, probably due to unintentional introduction (either with ornamental plant trade or with transport of goods). Further, the status of the spe- cies in Austria was evaluated from available data, and biological features of the species were compiled from the literature.

RESULTS

During the past approximate 25 years 84 Heteroptera species were published for the fi rst time (or confi rmed as being present) for Austria (Tab. 1). Th is is 9.4 % of the 896 Heteroptera species currently known to occur in Austria (Rabitsch 2004a, 2005b; Rabitsch et al. 2007; Rabitsch & Heiss 2008) and means that species were added at a rate of more than 3 per year, including those previously overlooked. Th irty-seven species were recorded based on historic material (collected before 1980) and 12 of these were not found again. Fifty-seven species are considered to have been overlooked and 27 species are considered as new arrivals. Within the overlooked species, 16 species were overlooked probably due to taxonomic changes, 25 species were overlooked probably due to their cryptic habit or biology and 16 species were overlooked for both reasons. Of the 27 new arrivals, the establishment of 9 species is doubtful or unknown because they are known only from a single record. Th is leads to 18 established new arrivals; a rate of 0.72 species added per year. Th e following comparisons are made between the complete data set (n=84) and the new arrival data set excluding doubtful records (n=18). Climatic conditions are considered to be the main driving force (14 species) for the 18 new arrivals, followed by introduction with ornamental plants or transport (4 species). Almost all of these species (15 of 18) are considered to be expanding their range and currently are increasing in abundance within in Austria and beyond. Th e native region of 14 of these 18 species is the Mediterranean (7 Ponto-Medi- terranean, 4 Holo-Mediterranean, 2 Atlanto-Mediterranean, 1 North-Mediterranean), two species are of Eastern Palaearctic origin, one species is of Eurosiberian origin and one species (Leptoglossus occidentalis Heidemann, 1910) is of Nearctic origin. Most spe- cies of the complete data set belong to (30 species), followed by Lygaeidae (15 species) and (8 spp.). Th e same families dominate within the newly arrived species: Miridae (5 species), Anthocoridae and Lygaeidae (3 species each). Most of the species occur in the Pannonic region of Austria (31 % in Lower Austria, 24 % in Burgenland, 15 % in Vienna). Considering stratum preference, arboricolous spe- 312 W. Rabitsch cies, living on trees and shrubs, dominate (45 %), followed by herbicolous and epigaeic species (30 % and 21 %, respectively) in the new arrival species and with similar propor- tions in the overlooked species. As expected, the proportion of epigaeic species with a more concealed way of life is rather high within the overlooked-cryptic species (46 %). Th e average body size of the Heteroptera species in Table 1 is 5.3 mm. Almost all of the species develop a single generation per year. Whereas no preponderance of a particular mode of hibernation was found in the complete data set, hibernation as adults clearly prevails among the new arrival species (70 % vs 20 % as eggs and 10 % as larvae). Phytophagous species dominate both data sets (46–52 %), followed by zoophagous species (25–27 %) and zoophytophagous species (18–21 %). Th ere is a high degree of food plant or prey specialization in both data sets. Monophagous, oligophagous and polyphagous species (30–40 %) were almost equal. Almost all new arrivals are macropterous and ca- pable of fl ying. Notable exceptions are the regularly apterous (rarely winged) Metapterus caspicus (Reduviidae) and the sexually dimorphic Mimocoris rugicollis (Miridae), the latter with winged males only. Habitat selection of new arrivals revealed a preference in decreasing order of open-land, forest-land and synanthropic habitats with not a single aquatic or semiaquatic species.

DISCUSSION

In Europe, during the last decades, an increasing number of species have shifted their range northwards from the Mediterranean (Reemer et al. 2003; Hickling et al. 2005; Parmesan 2006), including Heteroptera (e.g. Netherlands, Aukema 2003; UK, Judd & Hodkinson 1998; Kirby et al. 2001; Hickling et al. 2006; see review by Musolin & Fujisaki 2006; Musolin 2007). However, as recently argued by Gaston (2003) climate (or weather) is not the sole ultimate factor governing or driving range expansions. In particular, habitat change is of special relevance for the successful estab- lishment of many species in the new area. It is also clear that there are additional forces responsible, such as unintentional human-induced transportation by vehicles and goods, the intentional release for biological control and natural dispersal. Th is is confi rmed by the present results, which suggest climatic conditions are the main driving force for new arrivals of Heteroptera to Austria, including some doubtful cases, and supplemented by unintentional introductions with ornamental plants and goods. Most of the new arrivals are currently increasing their range, so it is expected that their abundance and distribu- tion will continue to increase in the future in Austria and beyond. Th e Mediterranean region is the major source of new arrivals of Heteroptera in Austria for the last decades with Ponto-Mediterranean species dominating. Th e in- tracontinental species exchange within Europe clearly exceeded the transcontinental introductions of non-native Heteroptera to Europe (Rabitsch, in prep.). Th e arrival of additional species in Austria is considered a matter of time. Among these are the Nearctic Corythucha arcuata (Say, 1832) (Tingidae), the Eastern-Asian Stephanitis takeyai Drake Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 313 Styria, K Styria, cropterous, cropterous, ipmmsy – zoophagous, – zoophagous, ts, forest edges, edges, forest ts, bi un? i z p m w he – herbicolous, he – herbicolous, SVHTFWP ar un- he ltine, az – asynchronous; az – asynchronous; ltine, Known provinces in Austrian distribution St, K, T K, St, nding. Mean body sizes are given in Mean body sizes given are nding. 8.8 NW, B, ar az l i, m o m w 6.0 O, N, W, B, size body seed-feeding), m – mycetophagous, z m – mycetophagous, seed-feeding), Rabitsch 2003b 4.5 W ar un e zp m m w Melber et al. 1991Melber et al. 3.0 N B, he un i p o m o Rabitsch unpubl. 1992Adlbauer 5.5 St ar az l i, m o m w 1996 Rabitsch 2003c 6.6 N epi un i zp m m o p – polyphagous; W = wing development: m – ma W = wing development: p – polyphagous; Comment Reference Mean establishment probable halophilous establishment probable establishment probable rst time since (and including) Melber et al. (1991). If two references references If two (1991). rst time since (and including) Melber et al. Austria Status in extinct Rabitsch 2004a 3.4 N ar un i z o m sy expansive & Friess Adlbauer open-land (wet and dry meadows, rural sites), w – wood-land (fores w – wood-land rural sites), and dryopen-land (wet meadows, force Driving climatic expansive 1991 Melber et al. 7.5 N B, he un e p m m o climatic expansive? single record, climatic expansiveclimatic? endangered, expansive Friess 2000 2.7 K N, W, B, epi, introduced- ornamental cryptic expansive? 1991, Melber et al. introduced- ornamental climatic? local single record, climatic? local single record, ophism: p – phytophagous (including ophism: rst time for Austria and the second reports an earlierrst time for Austria fi sion Inva- process new arrival new arrival new arrival new arrival over- looked over- looked new arrival new arrival new arrival region Native hagous; F = food preferences: o – oligophagous, o – oligophagous, F = food preferences: hagous; terranean terranean terranean arctic Mediterra- nean terranean terranean terranean terranean rst in record of fi known Austria Miridae 1983 Ponto-Medi- Miridae 2002 North-Medi- TingidaeAnthocoridae 1982 1998 Holo-Medi- East-Palae- Anthocoridae 1921 Atlanto- Aradidae 1974 North-Medi- Lygaeidae 1995 Ponto-Medi- Aradidae 1991 Ponto-Medi- 2003 Ponto-Medi-

rst mentioned the species for fi Reuter : Heteroptera species reported as occurring for the fi Heteroptera in Austria : Species Family Year Acetropis longirostris Puton Brachynotocoris Brachynotocoris puncticornis Agramma atricapillum (Spinola) obscuricepsAmphiareus (Poppius) Anthocoris sarothamni Douglas & Scott Aradus krueperi Aradus Reuter Arocatus longiceps Stål Aradus kuthyi Aradus Horvath Berytinus consimilis (Horváth) woodland), aq – aquatic and semiaquatic, sy – synanthropic, c - caves. c - caves. sy – synanthropic, aq – aquatic and semiaquatic, woodland), para – ectoparasitic, ep – epineustic, aq – aquatic; V = Voltinism: un – univoltine, bi – bivoltine, un-bi – univoltine or bivo un-bi – univoltine bi – bivoltine, un – univoltine, Voltinism: V = aq – aquatic; ep – epineustic, para – ectoparasitic, Tr T = i – imago; l – larvae, e – egg, H = Hibernation: mm. Abbreviations for Austrian provinces: B – Burgenland, W – Vienna, N – Lower Austria, O – Upper Austria, S – Salzburg, St – S – Salzburg, O – Upper Austria, N – Lower Austria, Vienna, W – B – Burgenland, provinces: Abbreviations for Austrian mm. epi – epigaeic, end – endogaeic, ar – arboricolous, S = Stratum: abbreviations: Further Vorarlberg. V – Tyrol, T – – Carinthia, o – P = habitat preference: a – apterous; b – brachypterous, zp – zoophytophagous, h – haematop zp – zoophytophagous, are given, the fi given, are Table 1 Table 314 W. Rabitsch o w b (m) epomsy epomo bi un i p p b, (p) un? i z o m, SVHTFWP he end Known provinces in Austrian distribution 2.8V N, B, ar un e zp m m w 3.3 B he un e zp m m o 5.4 N B, he un e p m m o size body Ressl 1995 Rabitsch unpubl. Rabitsch 1999b Rabitsch 1999b 3.0 N he un e p o m o Moulet 1995Rabitsch 2000 13.0 S 4.0 N he un i he p un o i m p o o m o Moulet 1995 11.2 B he un- Comment Reference Mean endangered, endangered, psammophilous not established establishment probable status unknown? Austria Status in local Rabitsch 1999b 5.0 N para az l i, h o a c local 1991, Melber et al. extinct Rabitsch 1999b 1.8 W epi, expansive Rabitsch 2002b 6.7 N W, ar un e z p m sy unknown single record, expansive Rabitsch 2004b 4.0V K, N, W, ar bi force Driving cryptic cryptic local , cryptic 2003 Niederer 2.0 V epi, taxonomy local 1991, Melber et al. taxonomy, taxonomy, cryptic taxonomy local 1991, Melber et al. cryptic localcryptic critically local Rabitsch 1999b 3.5 N B, he un e p o m o taxonomy local Rabitsch 2001b 5.8 O N, he un e p m m o climatic? introduced? cryptic local single record, climatic? expansive 2005 Friess et al. 2.5 St ar un i zintroduced- otransport m w introduced- ornamental taxonomy, taxonomy, cryptic extinct? single record, sion Inva- process over- looked? looked looked over- looked looked looked? looked looked new arrival new arrival? new arrival new arrival looked looked looked region Native Mediterra- nean terranean terranean arctic Mediterra- nean terranean rst in 1982 Holo-Medi- record of fi known Austria Anthocoridae 2000 Atlanto- Miridae 1971 Eurosiberian over- Miridae 1965 Holarctic over- Tingidae 1956 Ponto-Medi- Miridae 1983 Eurosiberian over- Miridae 1999Miridae Eurosiberian over- 1950 European over- Miridae 1934 Eurosiberian over- Miridae 2002 North-Medi- Pentatomidae 1971 East-Palae- Anthocoridae 2000 Atlanto- Stenocepha- lidae Miridae 2003 European over- Cimicidae 1997 Eurosiberian over- Rhopalidae 1960 Eurosiberian over-

avilinea

(A. (A. (Ferrari) Species Family Year Costa) Campylomma annulicorne (Signoret) Compsidolon pumilum (Jakovlev) Campylosteira bosnica Campylosteira Horváth Capsus pilifer (Remane) Reuter Conostethus roseus Conostethus (Fallén) Criocoris nigricornis Capsus wagneri (Remane) Deraeocoris fl Deraeocoris Costa) (A. (Dallas) Dybowskyia reticulata Cardiastethus Cardiastethus fasciiventris (Garbiglietti) Dicranocephalus setulosus Dichrooscytus gustavi Dichrooscytus Josifov Cimex dissimilis (Horváth) Chorosoma gracile Josifov Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 315 o o (b) (m) ippmo ipob, ipob, i? p p m, bi bi un i z p mun o i p m m o un e z p m o un e z p m w bi? un- SVHTFWP ar he he he epi Known provinces in Austrian distribution 3.8 St N, B, epi, 2.7 N B, he un e p m m o 8.3 N W, B, epi, 5.0 O N, W, he, 2.9 N B, he un- size body Rabitsch 1999b 4.9 N 1991Melber et al. 3.5 BRabitsch unpubl. epi bi i ar p un o i? m z o Rabitsch unpubl. p m w Rabitsch 1999b Rabitsch unpubl. 1991Melber et al. 6.7 NW, B, epi un e z p b o Rabitsch unpubl. Comment Reference Mean establishment probable endangered, endangered, psammophilous gered Austria Status in extinct Rabitsch 2001a 4.5 B end, local 1991, Melber et al. force Driving cryptic localclimatic single record, expansive 1995, Adlbauer cryptic local critically taxonomy, cryptic taxonomy local 1991, Heiss et al. cryptic local vulnerable 1991, Heiss et al. cryptic local Ressl 19953.3 Ncryptic local Ressl ar un e p m m w cryptic extinct Moulet 1995 11.2 N he un i p m m o cryptic extinct Rabitsch 1999b 3.9 N epi un i p p m o taxonomy commoncryptic local critically endan- 1991, Melber et al. climatic local 2005 Friess et al. 2.6 St epi, cryptic local Péricart 1999 2.7T N, epi un- taxonomy local 1991 Melber et al. 5.2 NW, B, ar un i p m m w taxonomy, taxonomy, cryptic sion Inva- process over- looked new arrival looked? over- looked over- looked over- looked? over- looked over- looked over- looked looked looked new arrival over- looked looked looked region Native terranean terranean terranean pean terranean terranean terranean terranean terranean terranean rst in record of fi known Austria Miridae 1976Lygaeidae Ponto-Medi- 1954 Holo-Medi- Lygaeidae 1998 Eurosiberian over- Miridae 1944 South-Euro- Cydnidae 1935 North-Medi- Nabidae 1970 Holo-Medi- Miridae 1988 Ponto-Medi- 1940 Holo-Medi- Nabidae 1982 Eurosiberian over- Miridae 1941 European? over- Tingidae 2000 Holo-Medi- Lygaeidae 1961 Holo-Medi- Lygaeidae 1988 European? over- Tingidae 1950 Eurosiberian over-

Fieber Lygaeidae 1932 North-Medi- (Pallas) Species Family Year Fulvius oxycarenoides oxycarenoides Fulvius (Reuter) Geocoris erythrocephalus (Lepeletier & Serville) Horváth Emblethis brachynotus brunnipennis Geotomus major Halticus Wagner Wagner A. Costa A. Hypseloecus visci Hypseloecus (Puton) Haploprocta sulcicornis Haploprocta (Fabricius) Icus angularis Icus Himacerus major Heterotoma Heterotoma planicornis Himacerus boops (Schiodte) Kalama aethiops (Horváth) Ischnocoris punctulatus Ischnocoris Fieber Kleidocerys privignus (Horváth) Lasiacantha hermani Vásárhelyi 316 W. Rabitsch o o w aq aq aq b, b, m m (m) (m) (m) (m) zpmo lopb, lopb, izpb, izpb, izpb, izpb, i? p p m o i? bi bi bi un e zp p b, bi? SVHTFWP he un i p o m o epi Known provinces in Austrian distribution K, T K, 4.0 K ar, 3.4 N B, he un e p o m o 7.1 V N, he un e p m m o 2.3 St epi un e, 1.9 N W, B, ep un- size 18.0T K, St, S, W, ar un i p o m sy 11.7 St, N, W, B, 15.2 N aq un i z p m aq body 2005 Rabitsch & Heiss 2008 Rabitsch unpubl. Rabitsch & 2005 Matocq Zettel 2000 Rabitsch 1999a Strauss 2006 Strauss Zettel 2000 Comment Reference Mean established? Austria Status in expansive Rabitsch & Heiss force Driving introduced- ornamental taxonomy extinctclimatic expansive Rabitsch 1999a 1.9 V Rabitsch 2001a 14.3 St ep un- ar un i z p m w taxonomy common 1991, Melber et al. taxonomy common Rabitsch 2001b 5.8 NW, B, ar un e p m m w climatic local only males, climatic expansive Rabitsch 2001b, taxonomy local Rabitsch & taxonomy local Rabitsch climatic expansive Rabitsch 2004b 5.0W B, ar un i p ? m w cryptic local 1991 Melber et al. 4.3 B epi un- cryptic local Heiss 1996, climatic expansive 1991 Melber et al. 10.1 N B, epi un i z p a, climatic? local 1991 Melber et al. 1.8 N B, he un i z p b, taxonomy common 1991 Melber et al. 2.3V N, W, B, aq un- cryptic local & Günther taxonomy common Rabitsch & sion Inva- process new arrival over- looked new arrival looked over- looked new arrival new arrival over- looked new arrival over- looked? looked new arrival new arrival? over- looked over- looked looked region Native America terranean terranean terranean? terranean terranean terranean terranean arctic terranean arctic terranean tane rst in record of fi known Austria Coreidae 2005 North Veliidae 1920 North-Medi- Reduviidae <1999 Ponto-Medi- Lygaeidae 1896 Eurosiberian over- Miridae 2000 Ponto-Medi- Miridae 1987 Ponto-Medi- Miridae 2001 Ponto-Medi- Notonectidae <1975 Ponto-Medi- Berytidae 2003 Ponto-Medi- Lygaeidae 1983 Trans-Palae- Miridae <1930 Eurosiberian over- Reduviidae 1988 Ponto-Medi- Corixidae 1982 North-Medi- Saldidae 1971 Boreo-mon- Veliidae 1993 Holarctic over- avus (Flor) Anthocoridae 1985 East-Palae- (Fieber) Species Family Year Leptoglossus occidentalis occidentalis Leptoglossus Heidemann Microvelia pygmaea pygmaea Microvelia (Dufour) goedelii Nagusta (Kolenati) Lygaeus simulans Lygaeus Deckert Neolygus zebei zebei Neolygus (Günther) Mimocoris rugicollis Costa) (A. Megalocoleus naso Megalocoleus Reuter Notonecta meridionalis Notonecta Poisson Metacanthus Metacanthus annulosus Nysius graminicola Nysius graminicola (Kolenati) Oncotylus viridifl (Goeze) Metapterus caspicus Metapterus (Dohrn) Orius agilis Micronecta scholtzi scholtzi Micronecta (Fieber) Micracanthia fennica Micracanthia (Reuter) Microvelia buenoi Drake Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 317 o m pomsy pomsy pomw (l) (l) (l) un i p p b, SVHTFWP ar un i, end Known provinces in Austrian distribution St, K, T K, St, 7.4 O, N, W, B, 2.7 N B, epi, 3.6 N W, B, ar un e zp m m w 5.4 St N, W, B, ar az i, 3.4 O B, ar un e zp m m w 4.7 N B, epi un i p p m o size body Rabitsch 2001b 2.0 W he un i zp o m o Rabitsch unpubl. Melber et al. 1991, 1991, Melber et al. Rabitsch unpubl. Adlbauer 1999Adlbauer 7.3 St ar un i, Rabitsch 2003c Adlbauer 2001, 2001, Adlbauer Rabitsch 1999b Rabitsch 2005a Rabitsch 2001b Rabitsch 1999a 3.4 V ar un e p o m w Rabitsch 2004aRabitsch 2003c 4.2 T 4.4 N ar un e ar zp un o e m zp w m m w Comment Reference Mean establishment probable endangered, endangered, psammophilous not established status unknown status unknown establishment probable Austria Status in expansive 1991, Melber et al. localexpansive single record, Rabitsch & force Driving introduced- ornamental climatic local single record, taxonomy common Rabitsch 2003b 3.5 N W, ar un e zp m m w cryptic local 1991 Melber et al. 3.9 B ar un e? p m m w taxonomy common 1991, Melber et al. cryptic local critically introduced- transport climatic? introduced? taxonomy local 1991, Melber et al. cryptic local 1991, Melber et al. climatic local 1991 Melber et al. 3.4W B, ar un e zp m m w crypticcryptic extinct single record, local Rabitsch 2001b 12.5 N ar un e? z o m w crypticclimatic extinct? single record, local single record, sion Inva- process over- looked new arrival over- looked over- looked looked looked new arrival new arrival looked over- looked new arrival? over- looked over- looked over- looked new arrival? region Native terranean terranean terranean terranean terranean terranean terranean pean? terranean? terranean tane terranean? rst in record of fi known Austria Lygaeidae 1948 Holo-Medi- Anthocoridae 2000 Holo-Medi- Miridae < 1900 Ponto-Medi- Miridae 1984 Ponto-Medi- Miridae 1946 European? over- Lygaeidae 1933 Eurosiberian over- Lygaeidae 1966 Holo-Medi- Miridae 1923 Eurosiberian over- Lygaeidae <1950 Holo-Medi- Miridae 1983 South-Euro- MiridaePentatomidae 1933 1960 Ponto-Medi- Ponto-Medi- MiridaeMiridae 1957 Boreo-mon- 2003 Ponto-Medi- Puton Puton Lygaeidae 1998 Holo-Medi- Species Family Year Orsillus depressus & Rey)(Mulsant Orius pallidicornis (Reuter) Psallus anaemicus Seidenstücker Psallus assimilis Stichel Pionosomus opacellus Horváth Orsillus reyi lavaterae Oxycarenus (Fabricius) Psallus confusus Rieger Peritrechus meridionalis Psallus cruentatus Psallus cruentatus & Rey)(Mulsant Phoenicocoris dissimilis Phoenicocoris (Reuter) Picromerus conformis (Herrich-Schäffer) Psallus lapponicus Psallus lapponicus Reuter Psallus lentigo Seidenstücker Pinalitus coccineus Pinalitus coccineus (Horváth) 318 W. Rabitsch o w aq b m (m) z p a, pomo i, i, (l) (e) bi un i p m m o un l z p m o SVHTFWP ar un e zp o m w epi end Known provinces in Austrian distribution K, T, V T, K, 5.1 St, O, N, W, 6.0 N B, epi un i p m m o 6.6 K ep un- 2.3T K, O, N, epi un i, 2.1 B epi un i z p m, size body 2006 Rabitsch 2003c 3.8 N ar un e zp m m w Rabitsch 2004a 15.6 N he, Rabitsch 2001b Rabitsch 2003a Rabitsch 2003a 2007 Comment Reference Mean establishment probable not established Austria Status in expansive Rabitsch 2002a 3.2 N W, ar un e p m m sy force Driving taxonomy common Rabitsch 2003c 4.6 N B, ar un e zp m m w taxonomy extinct Rabitsch 2001a 6.5 K he un i p m m w climatic expansive Rabitsch 2001b 3.7 N epi, taxonomy common Rieger & Rabitsch introduced- ornamental taxonomy regionalcryptic extinct 1991 Melber et al. 3.5 B 1991, Melber et al. ar un e zp m m w taxonomy local single record, taxonomy local Friess 2001a, taxonomy extinct single record, taxonomy common Heiss 1997b, cryptic local Rabitsch et al. cryptic local 1991 Melber et al. 3.1 B epi un? i? p p m o cryptic local 1991 Melber et al. 3.0 B ar un i z p b, sion Inva- process over- looked over- looked new arrival over- looked new arrival looked? looked looked? over- looked over- looked looked over- looked? over- looked over- looked? region Native terranean terranean Mediterra- nean arctic terranean pean terranean terranean terranean terranean rst in record of fi known Austria Miridae 1952 North-Medi- Cydnidae 1940 North-Medi- Miridae 1919 West-Palae- Miridae 2002 Ponto-Medi- Miridae 1983 over- European? Coreidae 1937 Eurosiberian over- Miridae 2003 European? over- Veliidae <1925 South-Euro- Reduviidae <1900 Ponto-Medi- Lygaeidae 1920 Eurosiberian? over- Anthocoridae 2006 Holo-Medi- Lygaeidae 1984 North-Medi- Anthocoridae 1988 Ponto-Medi- Cydnidae 2001 Atlanto- Species Family Year yreocoris fulvipennis fulvipennis yreocoris Psallus lucanicus Wagner Tritomegas Tritomegas rotundipennis (Dohrn) Psallus montanus Psallus montanus Josifov Tuponia elegans elegans Tuponia (Jakovlev) Psallus wagneri Ossiannilsson dalmanii Spathocera (Schilling) Psallus pseudoplatani Psallus pseudoplatani Reichling Velia currens Velia (Fabricius) Rhynocoris rubricus (Germar) Stygnocoris cimbricus (Gredler) Xylocoris obliquus Xylocoris Costa A. Stygnocoris similis Wagner Temnostethus dacicus Temnostethus (Puton) Th (Dallas) Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 319

& Maa, 1955 (Tingidae) and some Mediterranean species, e.g. Tuponia spp. (Miridae) and Nezara viridula (Linnaeus, 1758) (Pentatomidae). It is not possible to predict the “next” species to arrive in Austria, but it is very likely that it will be a mirid or tingid from the Mediterranean region. In other words, central Europe is becoming more Mediterranean-like in temperature and precipitation and in species diversity. Regional scenarios predict an increase in winter and summer tempera- tures of 3°C and of 1.5-2.5°C in spring and autumn for Austria until 2048 (Matulla et al. 2004). A northward shift of current species distributions is to be expected. Th e idea of a Mediterranization of Austria’s heteroptera fauna is not new. Hölzel (1954) wrote: “We are witnessing an immigration of [Heteroptera] species from the south and see a northwards migration in formerly owned areas” (my translation). Unfortunately, most of his new records did not withstand critical taxonomic verifi cation (Rabitsch 2003a). Mediterranean species have shifted their range northwards in the past as well. Cur- rent data indicate a nested occurrence of these species between 1932–1940, which were the climatically most favourable years of the 20th century before the exceptional increase around 1990 (Auer et al. 2001). Coincidentally, identical and additional Mediterranean species were also reported at this time from Slovakia and the Czech Republic (e.g. Icus angularis Fieber, 1861 (Lygaeidae), Monosteira unicostata (Mulsant & Rey, 1852) (Tingidae)) (Stehlík & Vavrinová 1999, Stehlík 2002), but not thereafter. Whereas this historic shift may be considered merely temperature-driven, the recent shift is pro- moted by a combination of temperature increases and changes in habitat characteristics. Th e increasing cultivation of native and non-native plants for horticultural and ornamental reasons, the utilization of anthropogenically changed habitats, the distribution patterns and dispersal routes are superimposed by climatic change. In conclusion, several driving forces work in concert, so that ultimate explanations of recent range expansions will remain controversial. But habitat change is at least as important as current temperature increase for Heteroptera. Th is trend continues, and continuous monitoring is necessary to detect these changes. Many of the Mediterranean species given in Tab. 1 live on cultivated ornamental food plants. It is therefore diffi cult to elucidate the mechanism which triggered their expansion and to separate climatic change from habitat change or if both driving forces act together in concert. New arrivals were also found to be associated with introduced ornamental plants in the U.K. by Kirby et al. (2001). However, as Kirby et al. (2001) noted, it is a surprisingly low number of species compared with the rather high number of introduced ornamental plants. Most species also show some degree of food plant or prey specialization. A similar pattern was found for the non-native Heteroptera species introduced to or within Europe (Rabitsch, in prep.). Being polyphagous and non- selective seems not to be of particular advantage for Heteroptera. Most species (70 %) occur in the dry, Pannonic, north-east of Austria, which may indicate an invasion gateway for Ponto-Mediterranean species. Th e Alps are an eff ec- tive barrier for Mediterranean species, which have to move west- or eastwards and only rarely penetrate into the Alps. Projecting the estimate of 0.76 new arrival species per 320 W. Rabitsch year to a decade (7.6) exceeds the estimated rate of new arrivals per decade for Europe (Rabitsch, in prep.). Th is is likely to be due to the geographical location of the coun- try, and changes of the Heteroptera fauna of Austria may be indicative for tomorrow’s Heteroptera fauna of Europe. Th e average body size of the Heteroptera species (5.3 mm) is similar to the average of the Central European Heteroptera species (5.6 mm, Rabitsch et al., in prep.). Th is contradicts the assumption that small species are more easily overlooked and indicates that body size is not of particular relevance for predicting additions of overlooked and new arrivals in a given territory. Body size also was not signifi cantly diff erent between newly arrived and overlooked species (5.8 vs 5.0 mm, respectively; p>0.05, t-test), although a cryptic way of life (epigaeic species) prevails among the overlooked species. Hibernation in the adult stage prevails in the new arrival species, which may be an eff ect of the greater robustness and defence capabilities of adults, compared to nymphs and eggs. To successfully conquer new territories, it is obviously advantageous to be able to fl y, which is confi rmed by the macroptery of almost all new arrivals. It is puzzling, however, to imagine how a regularly apterous species such as Metapterus caspicus or a sexually wing-dimorphic species such as Mimocoris rugicollis expands its range in a relatively short time. Beside possible anthropogenic translocation, passive wind dispersal of fl ight-unable individuals and larvae has to be taken into account (Rietschel 2007). New arrivals do not seem to prefer a particular type of habitat since they can be found in a wide variety of biotopes, but a slight preference for synanthropic sites in the most recent arrivals (since 2000) was found (Deraeocoris fl avilinea, Dichrooscytus gustavi, Leptoglossus occidentalis, Tuponia elegans), indicating the increasing relevance of introduc- tions with the transport of goods. Many species have been overlooked in the past and were discovered only re- cently. Th is is understandable in case of taxonomic changes, but unfortunate for rare species in cryptic habitats because it results in uneven data quality in time and space for these . Museum specimens not only serve as taxonomic vouchers but also document past faunas. Heteroptera in general is a thermophilous taxon (Honek & Kocourek 1990); abundance and diversity decrease with increasing altitude and latitude. Th erefore the Heteroptera might profi t from rising temperatures more than other insect groups. Considering that correlations between temperature and range changes often will remain tentative, phenological and elevation shifts of resident species seem to be much more conclusive indicators of climatic change than multi-factor driven interpretations of range changes (e.g. Ellis et al. 1997; Konvicka et al. 2003; Roy & Sparks 2000; Stefanescu et al. 2003). Data on changes in elevation range of Austrian Heteroptera are not readily available, but phenological shifts were already observed and will be presented elsewhere (Rabitsch, in prep.). In conclusion, Heteroptera are not only suitable indicators of diversity (e.g. Duelli & Obrist 1998; Virolainen et al. 2000), but also are valuable indicators of global change and deserve further study. Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 321

ACKNOWLEDGEMENTS

I thank Nikolay Simov for the invitation to contribute to this Festschrift. Berend Aukema and Petr Kment are thanked for helpful comments on the manuscript, David Roy and Al Wheeler are especially thanked for gentle language editing. Parts of the work were written within the EU-FP6-STREP DAISIE (http://www.europe-aliens.org).

РЕЗЮМЕ

През последните приблизително 25 години 84 вида Heteroptera бяха публикувани за първи път в Австрия. Тези видове представляват 9.4 % от 896 вида Heteroptera, известни в днешно време за Австрия, и това означава, че са били добавяни със скорост нe по-малко от 3 на година, включително пропуснати преди това пропуснати видове. Две трети от видовете (68%) са били пропуснати поради таксономични причини или заради тех- ния прикрит начин на живот или биологични особености, останалите видове (32%) се разглеждат като „пришълци”. С изключение на един единствен вид, 18 вида (21%) са доказани „пришълци”, установявани със скорост от 0.72 вида за година. Повечето от тези видове общо разширяват ареала си и увеличават обилието си в Австрия и другаде в Европа. По-голямата част от тези видове достигат Австрия вероятно благодаре- ние на благоприятни климатични условия (14 вида), следвани от видовете, пренесени чрез декоративни растения или транспорта (4 вида). Превъзходството на дендроби- онтните фитофагите, с висока степен на специализация към хранителното растение е в съгласие с предишни открития. Родина за 14 от 18-те видове е Средиземноморието, което води до „медитеранизация” на хетероптерната фауна в Австрия. Такова движе- ние вероятно е имало и преди (1932-1940), но много от видовете не са успели да се прис- пособят в Централна Европа. Много видове се появяват в Североизточна Австрия, което може би е предпочитан път за проникване на югоизточни средиземноморски видове, избягвайки по този начин бариерния ефект на Алпите. В сравнение с климатич- ните фактори, промяната на хабитата – особено поява на декоративни растения в урбанизираните райони – се разглежда като важен движещ фактор за съвременни допъл- нения към хетероптерната фауна на Австрия. За да бъде установен и проверен този модел е необходимо провеждане на мониторинг на Heteroptera в Австрия.

REFERENCES

Adlbauer K. (1992). Neue Wanzenarten für die Steiermark und für Österreich (Heteroptera). — Mitteilungen des naturwissenschaftlichen Verein Steiermark, 122: 173–176. Adlbauer K. (1995). Der Reliktstandort am Steinbruch Klausen bei Bad Gleichenberg – ein neues Naturschutzgebiet. — Landesmuseum Joanneum Graz, Jahresbericht, 1994, N.F. 24: 45–63. 322 W. Rabitsch

Adlbauer K. (1999). Neue Wanzenarten für Österreich, die Steiermark und das Burgenland. — Joannea Zoologie, 1: 71–78. Adlbauer K. & T. Friess (1996). Die Ritterwanze Arocatus longiceps - eine für Mitteleuropa neue Tierart (Heteroptera, Lygaeidae). — Landesmuseum Joanneum Graz, Jahresbericht, 1995, N.F. 25: 33–39. Auer I., R. Böhm & W. Schöner (2001). Austrian long-term climate 1767–2000. Multiple instrumental climate time series from Central Europe. — Österreichische Beiträge zu Meteorologie und Geophysik 25, Central Institute for Meteorology and Geodynamics, Vienna. Aukema B. (2003). Recent changes in the Dutch Heteroptera fauna (Insecta: ). — Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden: 39–52. Burton J.F. (2001). Th e responses of european insects to climate change. — British Wildlife, 12: 188–198. Cannon R.J.C. (1998). Th e implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. — Global Change Biology, 4: 785–796. Chapin F.S. III, O.E. Sala & E. Huber-Sanwald (eds) (2001). Global Biodiversity in a changing evironment. Scenarios for the 21st century. — Ecological Studies 152, Springer, 1-376. Duelli P. & M.K. Obrist (1998). In search of the best correlates for local organismal biodiversity in cultivated areas. — Biodiversity & Conservation, 7: 297–309. Dukes J.S. & H.A. Mooney (1999). Does global change increase the success of biological invaders? — Trends in Ecology and Evolution, 14: 135–139. Ellis W.N., J.H. Donner & J.H. Kuchlein (1997). Recent shifts in phenology of microlepidoptera, related to climatic change (Lepidoptera). — Entomologische Berichte, Amsterdam, 57: 66–72. Friess T. (2000). Libellen (Odonata) und Wanzen (Heteroptera) aus dem Naturschutzgebiet „Gut Walterskirchen“ am Wörthersee. — Carinthia II 190./110: 517–530. Friess T. (2001). Wanzen (Heteroptera) aus dem Naturschutzgebiet „Trögerner Klamm“ in Südkärnten. — Linzer biologische Beiträge, 33/1: 275–293. Friess T., W. Rabitsch & E. Heiss (2005). Neue und seltene Wanzen (Insecta, Heteroptera) aus Kärnten, der Steiermark, Tirol und Salzburg. — Beiträge zur Entomofaunistik, 6: 3–16. Gaston K.J. (2003). Th e structure and dynamics of geographic ranges. — Oxford Series in Ecology and Evolution, Oxford University Press: 1-266. Günther H. & G. Strauss (2006). Micracanthia fennica (Reuter 1848) (Heteroptera, Saldidae), ein Eiszeitrelikt in Mitteleuropa. — In: Rabitsch, W. (Ed.) Hug the Bug. For Love of True Bugs. Festschrift zum 70. Geburtstag von Ernst Heiss. Denisia 19: 875–878. Heiss E. (1996). Wanzenbeifänge (Heteroptera) aus den Naturschutzgebieten Bangser Ried und Matschels (Vorarlberg). — Vorarlberger Naturschau, 2: 247–260. Heiss E. (1997). Das Typenmaterial der von V.M.Gredler beschriebenen Miridae und Lygaeidae (Heteroptera). — Veröff entlichungen des Tiroler Landesmuseums Ferdinandeum, 77: 287–292. Heiss E., K.-H. Steinberger & K. Thaler (1991). Fallenfänge von Heteropteren in der Trockenlandschaft der Parndorfer Platte (Burgenland). — Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck,78: 111–118. Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 323

Hickling R., D.B. Roy, J.K. Hill & C.D. Thomas (2005). A northward shift of range margins in British Odonata. — Global Change Biology, 11: 502–506. Hickling R., D.B. Roy, J.K. Hill, R. Fox & C.D. Thomas (2006). Th e distributions of a wide range of taxonomic groups are expanding polewards. — Global Change Biology 12: 450–455. Hill J.K., C.D. Thomas, R. Fox, M.G. Telfer, S.G. Willis, et al. (2002). Responses of butterfl ies to twentieth century climate warming: implications for future ranges. — Proceedings of the Royal Society London B, 269: 2163–2171. Hölzel E. (1954). Neues über Heteroptera (Ungleichfl ügler oder Wanzen) aus Kärnten. — Carinthia II 144./64: 70–83. Honek A. & F. Kocourek (1990). Temperature and development time in insects: a general relationship between thermal constants. — Zoologisches Jahrbuch, Abteilung Systematik, Ökologie und Geographie, 117: 401–439. Judd S. & I. Hodkinson (1998). Th e biogeography and regional biodiversity of the British seed bugs (Hemiptera: Lygaeidae). — Journal of Biogeography, 25: 227–249. Kirby P., A.J.A. Stewart & M.R. Wilson (2001). True bugs, leaf- and planthoppers, and their allies. — In: Hawksworth, D.L. (ed.) Th e changing wildlife of Great Britain and Ireland. Taylor & Francis, London, 262–299. Konvicka M., M. Maradova, J. Benes, Z. Fric & P. Kepka (2003). Uphill shifts in distribution of butterfl ies in the Czech Republic: eff ects of changing climate detected on a regional scale. — Global Ecology & Biogeography, 12: 403–410. Matulla C., H. Formayer, P. Haas & H. Kromp-Kolb (2004). Mögliche Klimatrends in Österreich in der ersten Hälfte des 21. Jahrhunderts. — Österreichische Wasser- und Abfallwirtschaft, 56: 1–9. Melber A., H. Günther & C. Rieger (1991). Die Wanzenfauna des österreichischen Neusiedlerseegebietes (Insecta, Heteroptera). — Wissenschaftliche Arbeiten Burgenland, 89: 63–192. McCarty J.P. (2001). Ecological consequences of recent climate change. — Conservation Biology, 15: 320–331. Moulet P. (1995). Hémiptères , Pyrrhocoridae, et Stenocephalidae euro-méditerranéens. — Faune de France, Paris 81: 1-336. Musolin D.L. (2007). Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. — Global Change Biology, 13: 1565–1585. Musolin D.L. & K. Fujisaki (2006). Changes in ranges: trends in distribution of true bugs (Heteroptera) under conditions of the current climate warming. — Russian Entomological Journal, 15: 175–179. Niederer W. (2003). Wanzen (Insecta: Heteroptera) im Frastanzer Ried und den Illauen (Vorarlberg, Österreich). — Vorarlberger Naturschau, 13: 225–238. Parmesan C. (1996). Climate and species’ range. — Nature, 382: 765–766. Parmesan C. (2006). Ecological and evolutionary responses to recent climate change. — Annual Review of Ecology, Evolution and Systematic, 37: 637–669. Parmesan C., N. Ryrholm, C. Stefanescu, J.K. Hill, C.D. Thomas, et al. (1999). Poleward shifts in geographical ranges of butterfl y species associated with regional warming. — Nature, 399 : 579–583. 324 W. Rabitsch

Péricart J. (1999). Hémiptères Lygaeidae euro-méditerranéens. — Faune de France, Paris 84A: 1-468, 84B: 1-453, 84C: 1-487. Pimentel D. (2002). Biological invasions: economic and environmental costs of alien plant, , and microbe species. — CRC Press, Boca Raton, FL. Rabitsch W. (1999a). Die Wanzensammlung (Insecta, Heteroptera) von Johann Moosbrugger (1878-1953) am Naturhistorischen Museum Wien. — Annalen des Naturhistorischen Museums Wien 101B: 163–199. Rabitsch W. (1999b). Neue und seltene Wanzen (Insecta, Heteroptera) aus Wien und Niederösterreich. — Linzer Biologische Beiträge, 31/2: 993–1008. Rabitsch W. (2000). Dybowskyia reticulata (Dallas, 1851), eine neue Baumwanze für Österreich (Heteroptera, Pentatomidae). — Beiträge zur Entomofaunistik, 1: 79–80. Rabitsch W. (2001a). Notizen zur Wanzenfauna Österreichs (Insecta, Heteroptera). — Linzer Biologische Beiträge, 33/1: 83–86. Rabitsch W. (2001b). Neue und seltene Wanzen (Insecta, Heteroptera) aus Niederösterreich und Wien. Teil 2. — Linzer Biologische Beiträge, 33/2: 1057–1075. Rabitsch W. (2002a). Die Arten der Gattung Tuponia (Heteroptera, Miridae) im östlichen Österreich. — Beiträge zur Entomofaunistik, 3: 97–102. Rabitsch W. (2002b). Deraeocoris fl avilinea (A. Costa, 1862) erstmals in Österreich festgestellt (Heteroptera, Miridae). — Beiträge zur Entomofaunistik, 3: 181–183. Rabitsch W. (2003a). Die Wanzensammlung am Kärntner Landesmuseum. — Rudolfi num, Jahrbuch des Landesmuseum Kärnten 2002: 451–480. Rabitsch W. (2003b). Beitrag zur Kenntnis der Wanzenfauna von Wien (Insecta, Heteroptera). — Linzer biologische Beiträge, 35/2: 957–993. Rabitsch W. (2003c). Neue und seltene Wanzen (Insecta, Heteroptera) aus Niederösterreich und Wien. Teil 3. — Linzer biologische Beiträge, 35/2: 1293–1305. Rabitsch W. (2004a). Annotations to a check-list of the Heteroptera (Insecta) of Austria. — Annalen des Naturhistorischen Museums Wien, 105B: 453–492. Rabitsch W. (2004b). Wanzen (Insecta, Heteroptera) im Botanischen Garten der Universität Wien. — In: Pernstich, A. & Krenn, H.W. (eds) Die Tierwelt des Botanischen Gartens der Universität Wien. Eigenverlag Institut für Angewandte Biologie und Umweltbildung, Wien: 83–108. Rabitsch W. (2005a). Beitrag zur Kenntnis der Wanzenfauna von Oberösterreich (Insecta, Heteroptera). — Beiträge zur Naturkunde Oberösterreichs, 14: 315–326. Rabitsch W. (2005b). Heteroptera (Insecta). — In: Schuster, R. (Hrsg.) Checklisten der Fauna Österreichs, 2: 1–64. Rabitsch W. (2006). Geschichte und Bibliographie der Wanzenkunde in Österreich. — In: Rabitsch, W. (Ed.) Hug the bug – For love of true bugs. Festschrift zum 70. Geburtstag von Ernst Heiss. Denisia 19: 41–94. Rabitsch W. (2007). Rote Listen ausgewählter Tiergruppen Niederösterreichs - Wanzen (Heteroptera). — Niederösterreichische Landesregierung, St. Pölten: 1-280. Rabitsch W. & K. Adlbauer (2001). Zur Verbreitung von Oxycarenus lavaterae (Fabricius, 1787) in Österreich (Heteroptera, Lygaeidae). — Beiträge zur Entomofaunistik, 2: 49–54. Rabitsch W. & E. Heiss (2005). Leptoglossus occidentalis Heidemann, 1910, eine amerikanische Adventivart auch in Österreich aufgefunden (Heteroptera, Coreidae). — Berichte des naturwissenschaftlich-medizinischen Verein Innsbruck, 92: 131–135. Th e times they are a-changin’: driving forces of recent additions to the Heteroptera fauna of Austria 325

Rabitsch W. & E. Heiss (2008). Mimocoris rugicollis (A. Costa, 1853) (Heteroptera, Miridae), neu für Österreich. — Beiträge zur Entomofaunistik, 8 (2007): 157-160. Rabitsch W. & A. Matocq (2005). Megalocoleus naso (Reuter, 1879), new to Austria. — Beiträge zur Entomofaunistik, 6: 166–167. Rabitsch W. & H. Zettel (2000). Zur Wasserwanzenfauna (Heteroptera: Gerromorpha und Nepomorpha) des nördlichen Österreich. — Linzer Biologische Beiträge, 32/2: 1257–1268. Rabitsch W., E. Heiss & G. Strauss (2007). Zur Kenntnis der Wanzenfauna (Heteroptera) des Burgenlandes, Österreich. Teil 2. — Mainzer naturwissenschaftliches Archiv / Beiheft, 31: 209–230. Reemer M., P.J. van Helsdingen & R.M. Kleukers (eds) (2003). Changes in ranges: invertebrates on the move. — Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden: 1-137. Ressl F. (1995). Naturkunde des Bezirkes Scheibbs, Tierwelt (3). — Botanische Arbeitsgemeinschaft am Biologiezentrum / OÖ Landesmuseum Linz, Linz: 1-443. Rieger C. & W. Rabitsch (2006). Taxonomy and distribution of Psallus betuleti (Fallén) and P. montanus Josifov stat.nov. (Heteroptera, Miridae). — Tijdschrift voor Entomologie, 149: 161–166. Rietschel S. (2007). Wanzen (Heteroptera) als Neubürger und Arealerweiterer in Südwestdeutschland – Zeugen einer Klimaveränderung? — Mainzer naturwissenschaftliches Archiv / Beiheft, 31: 301–317. Root T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig & J.L. Pounds (2003). Fingerprints of global warming on wild and plants. — Nature, 421: 57–60. Roy D.B. & T.H. Sparks (2000). Phenology of British butterfl ies and climate change. — Global Change Biology, 6: 407–416. Sala O.E., F.S. Chapin III, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber- Sanwald, et al. (2000). Global biodiversity scenarios for the year 2100. — Science, 287: 1770–1774. Stefanescu C., J. Penuelas & J. Filella (2003). Eff ects of climatic change on the phenology of butterfl ies in the northwest Mediterranean Basin. — Global Change Biology, 9: 1494–1506. Stehlík J.L. (2002). Results of the investigation on Hemiptera in Moravia made by the Moravian Museum (Tingidae). — Acta Musei Moraviae, Scienciae biologiae, 87: 87–149. Stehlík J.L. & I. Vavrinová (1999). Results of the investigations on Heteroptera in Slovakia made by the Moravian Museum (Lygaeidae III). — Acta Musei Moraviae, Scienciae biologiae, 84: 153–201. Vitousek P.M., C.M. D’Antonio, L.L. Loope, M. Rejmanek & R. Westbrooks (1997). Introduced species: a signifi cant component of human-caused global change. — New Zealand Journal of Ecology, 21: 1–16. Virolainen K.M., P. Ahlroth, E. Hyvärinen, E. Korkeamäki, J. Mattila, J. Päivinen, T. Rintala, T. Suomi & J. Suhonen (2000). Hot spots, indicator taxa, complementarity and optimal networks of taiga. — Proceedings of the Royal Society London B 267: 1143–1147. Walther G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein (2002). Ecological responses to recent climate change. — Nature, 416: 389–395. 326 W. Rabitsch

Walther G.-R., L. Hughes, P. Vitousek & N.C. Stenseth (2005). Consensus on climate change. — Trends in Ecology and Evolution, 20: 648–649. Wilcove D.S., D. Rothstein, J. Dubow, A. Phillips & E. Losos (1998). Quantifying threats to imperiled species in the United States. Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. — Bioscience, 48: 607–615.