Life Cycle Assessment of Process Strategies for Value Recovery and Environmental Mitigation of Mining Waste
Total Page:16
File Type:pdf, Size:1020Kb
Life cycle assessment of process strategies for value recovery and environmental mitigation of mining waste by Kieran Hillmar Cairncross Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF ENGINEERING (CHEMICAL ENGINEERING) in the Faculty of Engineering at Stellenbosch University The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. Supervisor Dr Margreth Tadie December 2020 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 11 September 2020 Copyright © 2020 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract By 2031, South African primary ore gold grades are forecasted to decline to the gold grades expected in mine tailings resources. Furthermore, the reprocessing of mine tailings does not require the costly excavation and size reduction unit operations necessary for primary ore resources. Mine tailings can therefore be viewed as a secondary gold resource. Hazardous pollutants and acid mine drainage (AMD) emanating from Witwatersrand stockpiled tailings dams affect human and ecosystem health. Potential exists to valorise mine tailings to the circular economy as construction raw materials and mine backfill. Sequestration of toxic compounds from mine tailings is however necessary to avert the promotion of environmental impacts up the consumer value chain. Process flowsheets proposed in literature for gold recovery from mine tailings have neglected the evaluation of life cycle impacts of technologies that need to be evaluated before they can be presumed to be “green” alternatives. Life cycle assessment (LCA) was identified as an environmental impact assessment tool for assessment of ecological impacts of gold recovery process flowsheets. Outotec® HSC chemistry and Thinkstep’s GaBi® was identified as software solutions to conduct LCA with the ReCiPe® 2016 life cycle impact assessment (LCIA) methodology. LCA for gold recovery from mine tailings successfully identified environmental hotspots in process flowsheets. The LCA model predicted that the thiosulphate flowsheet reduced environmental impacts for 18 out of 19 impact categories compared to the cyanide flowsheet, apart from freshwater consumption impact category. Electricity consumption during cyanide destruction and emissions from the conventional cyanide flowsheet were recognized as reasons for the increased environmental impacts compared to the thiosulphate flowsheet. Suggestions to further reduce environmental impact based on LCA results were made. Cyanide and thiosulphate leaching process flowsheet solutions were identified for recovery of gold and ammonium diuranate (yellow-cake uranium) from a hypothetical scenario of West Rand, Witwatersrand mine tailings resource. Environmental impact of mine tailings was reduced. Sulphides and uranium in mine tailings were reduced from 0.18% to 0.03% (82% reduction) and from 54.9 g/tonne to 13.0 g/tonne respectively (75% reduction), thereby decreasing environmental impacts related to acid mine drainage and uranium radionuclide emissions. The processes proposed reduce heavy metal emissions and are not compliant with National Environmental Management: Waste act 2008 (Act No. 59 of 2008) (NEMA) for the protection of water resources. The exceptions are manganese and copper emissions for the thiosulphate flowsheet and manganese, copper and lead emissions for the cyanide flowsheet. Subsequent mine tailings remediation strategies are necessary to render mine tailings inert according to NEMA. LCA provides a basis for environmental impact assessment, but social- and economic- assessments are necessary to determine the viability of process flowsheets proposed and ensure sustainable development in the mineral processing industry. ii Stellenbosch University https://scholar.sun.ac.za Opsomming In Suid-Afrika word die goudgraad van primêre goudertshulpbronne voorspel om te verminder na die goudgraad in mynuitskothulpbronne teen 2031. Verder vereis die herprosessering van mynuitskot nie die duur uitgrawings en grootte reduksie eenheidsbedrywighede wat nodig is vir primêre ertshulpbronne nie. Mynuitskot kan daarom gesien word as ’n sekondêre goudhulpbron. Gevaarlike besoedeling en suurmyndreinering (AMD) wat van Witwatersrand se opgegaarde uitskotdamme vloei affekteer mens- en ekosisteemgesondheid. Potensiaal bestaan om mynuitskot te valoriseer na die sirkulêre ekonomie as roumateriaal vir konstruksie en mynterugvulsel. Sekwestrasie van toksiese samestellings van mynuitskot is egter noodsaaklik om die bevordering van die omgewingsimpak by die verbruikerswaardeketting op, te verhoed. Prosesvloeikaarte voorgestel in literatuur vir goudherwinning van mynuitskot het die evaluasie van lewensiklusimpakte van tegnologieë nagelaat wat geëvalueer moet word voor hulle aangeneem kan word as “groen” alternatiewe. Lewensiklus assessering (LCA) is geïdentifiseer as ’n omgewingsimpak assessering instrument om goudherwinningsprosesvloeidiagramme se ekologiese impakte te assesseer. Outotec® HSC chemie en Thinkstep se GaBi® is geïdentifiseer as oplossings vir sagteware om LCA met die ReCiPe® 2016 lewensiklus impak assessering (LCIA) metodologie uit te voer. LCA vir goudherwinning van mynuitskot het omgewingsbrandpunte in prosesvloeidiagramme suksesvol geïdentifiseer. Die LCA-model het voorspel dat die tiosulfaatvloeidiagram omgewings impakte vir 18 uit 19 impak kategorieë verminder het, in vergelyking met die sianiedvloeidiagram, afgesien van die impak kategorie van varswaterverbruik. Elektrisiteitverbruik gedurende sianiedverwoesting en uitlaat van die konvensionele sianiedvloeidiagram is herken as redes vir die verhoging van omgewings impakte in vergelyking met die tiosulfaatvloeidiagram. Voorstelle om omgewingsimpak verder te verminder gebaseer op LCA-resultate is gemaak. Sianied- en tiosulfaatlogingprosesvloeidiagram oplossings is geïdentifiseer vir die herwinning van goud- en ammoniumdiuranaat (geelkoekuraan) van ’n hipotetiese scenario van Wes-Rand, Witwatersrand se mynuitskothulpbronne. Die omgewingsimpak van mynuitskot is verminder. Sulfiede en uranium in mynuitskot is verminder van 0.18% tot 0.03% (82% vermindering) en van 54.9 g/ton tot 13.0 g/ton onderskeidelik (75% vermindering), en daarby is die omgewingsrisiko’s verwant aan suurmyndreinering en uraan radionuklied-emissies, verlaag. Die prosesse voorgestel verminder swaar metaal emissies en voldoen gedeeltelik aan die Nasionale Omgewingsbestuur: Afval akte 2008 (Akte no. 59 van 2008) (NEMA) vir die beskerming van waterhulpbronne. Die uitsonderings is mangaan- en koper emissies vir die tiosulfaatvloeidiagram en mangaan-, koper- en lood emissies vir die sianiedvloeidiagram. Daaropvolgende mynuitskotremediëringstrategieë is nodig om mynuitskot inert te maak volgens NEMA. LCA verskaf ’n basis vir omgewingsimpak assessering, maar sosiale- en ekonomiese assesserings is nodig om lewensvatbaarheid van iii Stellenbosch University https://scholar.sun.ac.za voorgestelde prosesvloeidiagramme te bepaal, en volhoubare ontwikkeling in die mineraalprosesseringindustrie te verseker. iv Stellenbosch University https://scholar.sun.ac.za Acknowledgements I wish to extend gratitude towards the following people and organisations • My supervisor Dr Margreth Tadie for her invaluable contributions to during the development of this research project. Her guidance, teachings and mentorship in aspects of research and academia as well as the opportunity to be part of her research team has contributed significantly to my career development in chemical engineering. • I wish to acknowledge the help provided by Francis Layman for navigating processes for acquisition of tools that aided in the completion of this work. • Royal Society and NRF for funding this project • My partner (Adriaan Venter), parents (Rene and Elmo Cairncross) and friends (with honourable mentions to Evelyn Manjengwa, Alicia de Waal, Samantha Blignault Neo Motang and Taneha Hans) for technical knowledge, encouragement and guidance. v Stellenbosch University https://scholar.sun.ac.za Table of contents Abstract ..................................................................................................................................... ii Acknowledgements .................................................................................................................. v Table of contents ..................................................................................................................... vi List of figures ........................................................................................................................... xi List of tables ........................................................................................................................... xiv List of abbreviations .............................................................................................................. xix Nomenclature ........................................................................................................................