Geography, Hydrography and Climate 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on the Occurrence of Some Poorly Known Decapoda (Crustacea) in the Southern North Sea
NOTES ON THE OCCURRENCE OF SOME POORLY KNOWN DECAPODA (CRUSTACEA) IN THE SOUTHERN NORTH SEA by J. P. H M ADEMA Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands F CREUTZBERG & G J VAN NOORT Netherlands Institute for Sea Research, Texel, The Netherlands With 9 text-figures, 6 tables, 5 maps INTRODUCTION Since April 1972 an ecological trawl-survey programme has been undertaken by the Netherlands Institute for Sea Research (NIOZ), Texel, in the southern North Sea with the R. V. "Aurelia". The main object is to obtain information on distribution, density, biomass and fluctuations of crawling or swimming demersal (epibenthic) fauna such as small fishes, shrimps, prawns, crabs, asteroids, ophiuroids and some gastropods, for the evaluation of the role of these carnivores in the benthic ecosystem of the southern North Sea. Sedimentological aspects of the area are described by Creutzberg & Postma (1979). Within the context of the present paper the most important feature is the mesh of 5 x 5 mm2 of the cod end of the 5V2 m beam-trawl used and the extensive area of 5000-10,000 m2 covered during each haul. These exceptional circumstances resulted into faunistically interesting catches which gave rise to a cooperation with taxonomic specialists of the Rijksmuseum van Natuurlijke Historie (RMNH), Leiden. The present paper deals with decapod crustaceans, collected during "Aurelia"-cruises, which are considered to be scarce or rare in the southern North Sea, completed with data from bottom-samples and other sources The species in question are: Pandalina brevirostris, Spirontocans lilljeborgii, Alpheus macrocheles, Pontophilus spinosus, Pontophilus bi.spino.sus, Galathea dispersa, Ebalia tubero.sa, Ebalia tumefacta, Ebalia cranchii, Atelecyclus rotundatus, Monodaeus couchii, Callianassa subterranea, Callianas.sa tyrrhena, Upogebia stellata and Upogebia deltaura Of the genus Macropodia a number of specimens have been collected, which partly were identified as M. -
Chapter 5 Water Levels and Flow
253 CHAPTER 5 WATER LEVELS AND FLOW 1. INTRODUCTION The purpose of this chapter is to provide the hydrographer and technical reader the fundamental information required to understand and apply water levels, derived water level products and datums, and water currents to carry out field operations in support of hydrographic surveying and mapping activities. The hydrographer is concerned not only with the elevation of the sea surface, which is affected significantly by tides, but also with the elevation of lake and river surfaces, where tidal phenomena may have little effect. The term ‘tide’ is traditionally accepted and widely used by hydrographers in connection with the instrumentation used to measure the elevation of the water surface, though the term ‘water level’ would be more technically correct. The term ‘current’ similarly is accepted in many areas in connection with tidal currents; however water currents are greatly affected by much more than the tide producing forces. The term ‘flow’ is often used instead of currents. Tidal forces play such a significant role in completing most hydrographic surveys that tide producing forces and fundamental tidal variations are only described in general with appropriate technical references in this chapter. It is important for the hydrographer to understand why tide, water level and water current characteristics vary both over time and spatially so that they are taken fully into account for survey planning and operations which will lead to successful production of accurate surveys and charts. Because procedures and approaches to measuring and applying water levels, tides and currents vary depending upon the country, this chapter covers general principles using documented examples as appropriate for illustration. -
North Sea Palaeogeographical Reconstructions for the Last 1 Ma
Netherlands Journal of Geosciences —– Geologie en Mijnbouw |93 – 1/2| 7-29| 2014 doi: 10.1017/njg.2014.12 North Sea palaeogeographical reconstructions for the last 1 Ma K.M. Cohen1,2,3,*,P.L.Gibbard4 & H.J.T. Weerts5 1 Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands 2 Department of Applied Geology and Geophysics, Deltares, Unit BGS, Princetonlaan 6, Utrecht 3 Department of Geomodelling, TNO Geological Survey of the Netherlands, Princetonlaan 6, Utrecht 4 Quaternary Palaeoenvironments Group, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom 5 Cultural Heritage Agency, Ministry of Education, Culture and Science, P.O. Box 1600, 3800 BP Amersfoort, the Netherlands * Corresponding author. Email: [email protected] Manuscript received: 3 February 2014, accepted: 2 May 2014 Abstract The landscape evolution of the southern North Sea basin is complex and has left a geographically varying record of marine, lacustrine, fluvial and glacial sedimentation and erosion. Quaternary climatic history, which importantly included glaciation, combined with tectonics gave rise to cyclic and non-cyclic changes of sedimentation and erosion patterns. Large-scale landscape reorganisations left strong imprints in the preserved record, and are important for the detail that palaeogeographical reconstructions for the North Sea area can achieve. In the spirit of the North Sea Prehistory Research and Management Framework (NSPRMF; Peeters et al., 2009), this paper provides background geological information regarding the North Sea. It summarises current stratigraphical and chronological frameworks and provides an overview of sedimentary environments. As we go back in time, the understanding of Quaternary palaeo-environmental evolution in the North Sea basin during the last 1 million years becomes decreasingly accurate, with degree of preservation and accuracy of age control equally important controls. -
National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000
FGDC Data Committee FGDC Document Number National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000 NSDI National Spatial Data Infrastructure National Hydrography Data Content Standard for Coastal and Inland Waterways – Public Review Draft Bathymetric Subcommittee Federal Geographic Data Committee January 2000 Federal Geographic Data Committee i FGDC Data Committee FGDC Document Number National Hydrography Data Content Standard for Coastal and Inland Waterways Public Review Draft, January 2000 Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Energy, Housing and Urban Development, the Interior, State, and Transportation; the Environmental Protection Agency; the Federal Emergency Management Agency; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; and the Tennessee Valley Authority. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the -
Hydrographic Containment of a Spawning Group of Plaice in the Southern Bight of the North Sea
MARINE ECOLOGY PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. 1 REVIEW Hydrographic containment of a spawning group of plaice in the Southern Bight of the North Sea D. H. Cushing 198 Yarmouth Rd, Lowestoft, Suffolk NR32 4AB,United Kingdom ABSTRACT: The spawning group of plaice Pleuronectes platessa L. which spawns in the Southern Bight of the North Sea is relatively isolated from neighbouring groups. The adults migrate to a fixed spawning ground at a fixed season by selective tidal stream transport. The larvae drift in the lower part of the water column from the spawning ground to the fixed nursery ground in the Wadden Sea. Such mechanisms allow the group to be retained within a part of the Southern North Sea. INTRODUCTION prises all material published to that date). In the south- ern North Sea 3 spawning groups are usually recog- The hydrographic containment of a fish stock was nized: German Bight, Flamborough and Southern initially defined as the seasonal use of currents by fish Bight (but there may be a fourth immediately south of populations (Cushing 1968). It was based on the the Dogger Bank, which de Veen [19?8], called the triangle of migration (Harden Jones 1968), the circuit Transition Area); there is another in the eastern English by which the stock maintains its identity from genera- Channel which is as large as that in the Southern Bight tion to generation (Fig. l).He wrote: 'the young stages (Harding et al. 1978). (The locations of these and other leave the spawning ground at A for the nursery ground places mentioned are shown in Fig. -
Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire Jayne F
Journal of Coastal Research 35 1 143–157 Coconut Creek, Florida January 2019 Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire Jayne F. Knott†*, Jennifer M. Jacobs†, Jo S. Daniel†, and Paul Kirshen‡ †Department of Civil and Environmental Engineering ‡School for the Environment University of New Hampshire University of Massachusetts Boston Durham, NH 03824, U.S.A. Boston, MA 02125, U.S.A. ABSTRACT Knott, J.F.; Jacobs, J.M.; Daniel, J.S., and Kirshen, P., 2019. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. Journal of Coastal Research, 35(1), 143–157. Coconut Creek (Florida), ISSN 0749-0208. Coastal communities with low topography are vulnerable from sea-level rise (SLR) caused by climate change and glacial isostasy. Coastal groundwater will rise with sea level, affecting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in coastal areas of high aquifer transmissivity. In this regional study, SLR-induced groundwater rise is investigated in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated NE. A numerical groundwater-flow model is used with groundwater observations and withdrawals, LIDAR topography, and surface-water hydrology to investigate SLR-induced changes in groundwater levels in New Hampshire’s coastal region. The SLR groundwater signal is detected more than three times farther inland than projected tidal flooding from SLR. The projected mean groundwater rise relative to SLR is 66% between 0 and 1 km, 34% between 1 and 2 km, 18% between 2 and 3 km, 7% between 3 and 4 km, and 3% between 4 and 5 km of the coastline, with large variability around the mean. -
Skagerrak Interconnecting Grids, Upgrade
Skagerrak Interconnecting grids, Upgrade An excellent example of the benefits that can be achieved through interconnections. The Skagerrak HVDC transmission system comprises several The system will help overcome distance and grid constraints HVDC links which together provide a total of 1,640 MW trans- while ensuring robust performance, power quality and minimal mission capacity between Kristiansand in southern Norway electrical losses. In the rare case of a power system outage, and Tjele on Denmark’s Jutland peninsula. The link is owned the technology’s ‘black-start’ capability allows for a fast net- by Statnett in Norway, and Energinet.dk in Denmark. work restoration using power from the other end of the link. These factors were essential in the selection of the HVDC Light Skagerrak 1&2 rated 500 MW was commissioned in 1976-77 technology for the fourth Skagerrak HVDC link. and Skagerrak 3, rated 440 MW, became operational in 1993. The latest Skagerrak project was awarded to ABB in 2011, and comprises a fourth link using HVDC Light technology which will operate in a bipole mode together with the Skager- rak 3 HVDC Classic link and a control system upgrade of the latter. This is the first time an HVDC Classic and an HVDC Light link will be tied together in such a bipole configuration. This is possible because of ABB’s advanced MACH control system, which was also used for a Skagerrak 1-2 upgrade in 2007. The new link will boost transmission capacity between the mainly hydroelectric-based Norwegian system and the wind and thermal power-based Danish system by an additional 700 MW with a voltage rating of 500 kV. -
Hydrographic Surveys Specifications and Deliverables
HYDROGRAPHIC SURVEYS SPECIFICATIONS AND DELIVERABLES March 2019 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Contents 1 Introduction ......................................................................................................................................1 1.1 Change Management ............................................................................................................................................. 2 1.2 Changes from April 2018 ...................................................................................................................................... 2 1.3 Definitions ............................................................................................................................................................... 4 1.3.1 Hydrographer ................................................................................................................................................. 4 1.3.2 Navigable Area Survey .................................................................................................................................. 4 1.4 Pre-Survey Assessment ......................................................................................................................................... 5 1.5 Environmental Compliance .................................................................................................................................. 5 1.6 Dangers to Navigation .......................................................................................................................................... -
In Sight of Doggerland: from Speculative Survey to Landscape Exploration
the premier e-journal for archaeology Issue 22 ISSN 1363-5387 URL: http://intarch.ac.uk In Sight of Doggerland: From speculative survey to landscape exploration Simon Fitch 1/2, Vince Gaffney 1 and Ken Thomson 2 1 Institute of Archaeology and Antiquity, University of Birmingham, Edgbaston, B15 2TT, UK 2 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. Email: [email protected] Summary The North Sea has long been known by archaeologists as an area of Mesolithic occupation, and has even been argued as the heartland of the Mesolithic in North Western Europe. Yet this area remains effectively terra incognita to archaeologists, and the nature of its occupation, tantalisingly elusive. The submergence of this landscape has therefore effectively hindered archaeological research into this vitally important region. Yet this region contains one of the most detailed and comprehensive records of the Late Quaternary and Holocene, and its preserved sedimentary successions represent a mine of information that remains untapped by archaeologists. However the lack of direct data pertaining to this region results in all previous maps of the prehistoric landscape being at best hypothetical. This paper will present results which illustrate that through the utilisation of spatially extensive oil industry data, the recovery information pertaining to the actual Mesolithic landscape of the North Sea is now possible. This information reveals the diversity of this landscape and shows that much greater consideration of submerged Mesolithic landscapes is now required of archaeologists. Whilst the study of such landscapes is in its infancy, the availability of such information offers the possibility of transforming how we interpret traditional terrestrial data and its relationship to the larger European Mesolithic. -
Hydrographic Surveying Resources at ODOT
Hydrographic Surveying Resources @ ODOT David Moehl, PLS, CH Project Surveyor, ODOT Geometronics What is hydrography? • Hydrography is the measurement of physical features of a water body. • Bathymetry is the foundation of the science of hydrography. • Hydrography includes not only bathymetry, but also the shape and features of the shoreline; the characteristics of tides, currents, and waves; and the physical and chemical properties of the water itself. What is bathymetry? • The name is derived from Greek: • Bathus = Deep • and Meton = Measure • Dictionary: “The measurement of the depths of oceans, seas, or other large bodies of water, also: the data derived from such measurement.” • Wikipedia: “is the underwater equivalent to topography.” • NOAA: “The study of the ‘beds’ or ‘floors’ of water bodies, including the ocean, rivers, streams, and lakes and currently means ‘submarine topography’.” Source: https://www.ngdc.noaa.gov The lost city of Atlantis? Source: Google Earth How do we measure water depths? • Manual How do we measure water depths? • Manual How do we measure water depths? • Manual How do we measure water depths? • Manual • Sound • Echosounders • Determines the depth by measuring the two way travel time of sound through the water • Different types of echosounders Singlebeam echosounders • This is the tool that ODOT utilizes • Benefits of this system: • Most affordable and widely used • Less ongoing training, software and maintenance costs • Useful for: • Cross section data acquisition for hydraulic modeling • Uniform topography -
Names of Sub-Areas and Divisions of FAO Fishing Areas 27 and 37 NORTH-EAST ATLANTIC
Names of Sub-areas and Divisions of FAO fishing areas 27 and 37 NORTH-EAST ATLANTIC Subarea I Barents Sea Subarea II Norwegian Sea, Spitzbergen, and Bear Island Division II a Norwegian Sea Division II b Spitzbergen and Bear Island Subarea III Skagerrak, Kattegat, Sound, Belt Sea, and Baltic Sea; the Sound and Belt together known also as the Transition Area Division III a Skagerrak and Kattegat Division III b,c Sound and Belt Sea or Transition Area Division III b (23) Sound Division III c (22) Belt Sea Division III d (24-32) Baltic Sea Subarea IV North Sea Division IV a Northern North Sea Division IV b Central North Sea Division IV c Southern North Sea Subarea V Iceland and Faroes Grounds Division V a Iceland Grounds Division V b Faroes Grounds Subarea VI Rockall, Northwest Coast of Scotland and North Ireland, the Northwest Coast of Scotland and North Ireland also known as the West of Scotland Division VI a Northwest Coast of Scotland and North Ireland or West of Scotland Division VI b Rockall Subarea VII Irish Sea, West of Ireland, Porcupine Bank, Eastern and Western English Channel, Bristol Channel, Celtic Sea North and South, and Southwest of Ireland - East and West Division VII a Irish Sea Division VII b West of Ireland Division VII c Porcupine Bank Division VII d Eastern English Channel Division VII e Western English Channel Division VII f Bristol Channel Division VII g Celtic Sea North Division VII h Celtic Sea South Division VII j South-West of Ireland - East Division VII k South-West of Ireland - West Subarea VIII Bay of Biscay -
A Renewed Cenozoic Story of the Strait of Dover
EXTRAIT DES ANNALES DE LA SOCIÉTÉ GÉOLOGIQUE DU NORD Ann. Soc. Géol. du Nord. T. 17 (2ème série) p. 59-80 T. 17 (2ème série), p. 59-80, Décembre 2010. LILLE A RENEWED CENOZOIC STORY OF THE STRAIT OF DOVER Une révision de l’histoire cénozoïque du Pas-de-Calais par Brigitte VAN VLIET-LANOË (*), Guillaume GOSSELIN (**), Jean-Louis MANSY (**)(†), Chantal BOURDILLON (****), Murielle MEURISSE-FORT (****)(**), Jean-Pierre HENRIET (*****), Pascal LE ROY (***), Alain TRENTESAUX (**) . Résumé. — Le détroit est potentiellement un élément du rift européen, subsident dès le Paléocène jusqu’au Quaternaire, mais surtout pendant la phase d’extension oligocène liée à l’ouverture de l’Atlantique Nord. Comme ce secteur de l’Europe correspond à une zone en inversion tectonique, le front varisque, l’extension n’a pas pu s’exprimer pleinement. L’inversion du front varisque a accommodé l’essentiel du raccourcissement imposé à la plate-forme occidentale de l’Europe par la formation des Pyrénées et l’ouverture de l’Atlantique Nord. La dépression du Boulonnais constitue dès l’Yprésien un golfe marin calqué sur une zone déjà partiellement évidée dès le Crétacé. Une réinterprétation des formations sédimentaires superficielles internes au Boulonnais montre l’existence d’une ouverture très précoce du détroit dès l’Eocène. Le Pas-de- Calais est ouvert dès la fin du Lutétien, pendant une partie de l’Oligocène et du Mio-Pliocène final, les faunes de ces deux étages étant identiques de part et d'autre du détroit. Il s’est refermé par épisodes pour des raisons tectoniques et eustatiques, à l’Oligocène final, certainement au Miocène inférieure et moyen, et à partir du Quaternaire ancien pour n’être ré-ouvert que tardivement à la veille du Dernier Interglaciaire.