bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.105528; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide CRISPR-Cas9 screen reveals common factors in dsRNA and Sindbis virus- induced cell death Olivier Petitjean1, *, Erika Girardi1, *, Richard Patryk Ngondo2, Vladimir Lupashin3, Sébastien Pfeffer1, ‡ 1 Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg France 2 Université de Strasbourg, Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg France 3 University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States of America * These authors contributed equally ‡ To whom correspondence should be addressed:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.105528; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Double stranded RNA (dsRNA) is the hallmark of many viral infections. dsRNA is produced either by RNA viruses during replication or by DNA viruses upon convergent transcription. Synthetic dsRNA is also able to mimic viral-induced activation of innate immune response and cell death. In this study, we employed a genome-wide CRISPR-Cas9 loss of function screen based on cell survival in order to identify genes implicated in the host response to dsRNA.