VI01CH23-Bhatia ARI 4 September 2014 14:52 New Methods in Tissue Engineering: Improved Models for Viral Infection Vyas Ramanan,1,† Margaret A. Scull,4,† Timothy P. Sheahan,4 Charles M. Rice,4 and Sangeeta N. Bhatia1,2,3,5,6 1Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, 2Department of Electrical Engineering and Computer Science, and 3David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email:
[email protected] 4Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065; email:
[email protected] 5Division of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115 6Howard Hughes Medical Institute, Cambridge, Massachusetts 02139 Annu. Rev. Virol. 2014. 1:475–99 Keywords The Annual Review of Virology is online at cell-cell interactions, complexity, host-pathogen interactions, hepatotropic virology.annualreviews.org viruses, patterning, primary cells This article’s doi: 10.1146/annurev-virology-031413-085437 Abstract Copyright c 2014 by Annual Reviews. New insights in the study of virus and host biology in the context of viral All rights reserved infection are made possible by the development of model systems that faith- †These authors contributed equally to the writing by Massachusetts Institute of Technology (MIT) on 10/02/14. For personal use only. fully recapitulate the in vivo viral life cycle. Standard tissue culture models of this review. Annual Review of Virology 2014.1:475-499. Downloaded from www.annualreviews.org lack critical emergent properties driven by cellular organization and in vivo– like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis.