Distances from Stellar Kinematics for Peculiar Virgo Cluster Spiral Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Distances from Stellar Kinematics for Peculiar Virgo Cluster Spiral Galaxies Distances from Stellar Kinematics for Peculiar Virgo Cluster Spiral Galaxies Juan R. Cort´es Departamento de Astronom´ıa, Universidad de Chile Casilla 36-D, Santiago, Chile [email protected] National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 Jeffrey D. P. Kenney Department of Astronomy, Yale University P.0. Box 208101, New Haven, CT 06520-8101 [email protected] Eduardo Hardy1 National Radio Astronomy Observatory Casilla El Golf 16-10, Las Condes, Santiago, Chile [email protected] Departamento de Astronom´ıa, Universidad de Chile2 Casilla 36-D, Santiago, Chile ABSTRACT We present distance estimates for eleven peculiar Virgo cluster spiral galaxies based on mea- surements of the stellar kinematics of their central 2 kpc. Stellar circular velocities were obtained using two-integral dynamical models. Distances were obtained by comparing, at each radius, the stellar circular velocities with synthetic Hα rotation curves derived from NIR Tully-Fisher relations. The results show that most of our galaxies are located within 4 Mpc of the core arXiv:0803.3638v2 [astro-ph] 14 Apr 2008 of the cluster. Three of these galaxies, previously classified as “low rotator galaxies” or with “Truncated/Compact” Hα radial distributions, have stellar kinematics-based distances that are discrepant with HI-based distances by at least 60%, and are likely to be located within the virial radius of the cluster. These discrepancies appear due to very truncated gas distributions plus non-circular gas motions or gas motions not in the plane of the stellar disk, perhaps as the result of gravitational interactions. Our results show that environmental effects can significantly re- duce the measured HI linewidths for some disturbed cluster galaxies, thus affecting the accurate determination of distances based on gas kinematics methods. Subject headings: galaxies: clusters: individual (Virgo) — galaxies: distances and redshifts — galaxies: fundamental parameters (classification, colors, luminosities, masses, radii, etc.) — galaxies: ISM —— galaxies: stars —- galaxies: kinematics and dynamics galaxies: nuclei — galaxies: evolution —- galaxies: interactions —- galaxies: peculiar 1 1. Introduction group (Sanchis et al. 2002, Mamon et al. 2004, and Sanchis et al. 2004), the possibility was For many years, the Tully-Fisher relation (Tully analyzed that these 13 HI-deficient objects had & Fisher, 1977) has been used to estimate dis- crossed the core of the cluster, losing their gas tances to the Virgo Cluster. These studies were content as a result of ICM-ISM stripping. They based on optical or near infrared photometry concluded these galaxies lie farther away than (Gavazzi et al. 1999), together with gas kine- the maximum radius to which these galaxies can matics from HI linewidths (e.g., Yasuda et al. bounce out, making core-crossing improbable, and 1997) or Hα rotation curves (Rubin et al. 1999). thus difficult for ICM-ISM stripping to be the These techniques have been useful in the determi- cause of the observed HI-deficiency. These au- nation of distances to individual galaxies within thors suggested alternative scenarios including the the cluster, allowing attempts to determine its 3- possibility of erroneous distance estimations, HI- D structure (i.e. Yasuda et al. 1997, Gavazzi et deficiency caused by tidal-interactions, heating of al. 1999, and more recently Solanes et al. 2002). the gas by mergers, and even questioned the claims Recent results show that there is a population for HI-deficiency. of galaxies in Virgo with HI line–widths narrower The application of the techniques discussed than those expected from the mean Tully-Fisher above to HI deficient galaxies suffers from the relation derived for the cluster. We refer to these possibility that environmental effects can reduce as “Tully-Fisher deviant” galaxies. Either these the spatial extent of the atomic gas, cause non- galaxies are foreground to the Virgo cluster, or circular motions or other disturbances, thus re- they have peculiarities which make their observed ducing the measured line-widths and therefore gas line–widths poor tracers of galaxy mass, and causing derived distances to be underestimated hence luminosity. (Guhathakurta et al. 1988 and Teerikorpi et al. The Rubin et al. (1999) study of Hα rotation 1992). Indeed these small line-widths could be curves of 89 Virgo disk galaxies identified a popu- caused either by truncation of the gas disks by lation ( 6% of total sample) which appears to de- ICM-ISM stripping, or because the gas velocities ∼ viate significantly from the Tully-Fisher relation, are intrinsically small at every radius (e.g. Rubin showing anomalously “low gas rotation” velocities et al. 1999), which can happen if the gas motion at apparently every radius, which they called “low is non-equilibrium or non-circular, or the gas ge- rotators galaxies”. Solanes et al. (2002) studied ometry is not understood. the 3-D structure of the cluster using the Tully– These conclusions raise obvious questions about Fisher relation based on HI linewidths and, most these objects, such as: Could these “Tully-Fisher recently, 13 HI deficient spiral galaxies with appar- deviant” galaxies be the result of an underestima- ently large 3-D barycentric distances located far tion of the distances produced by environmental away in front and behind the core of Virgo (San- effects, leading to an artificial distortion of the true chis et al. 2004). Seven galaxies were identified as cluster shape? being in the foreground of the cluster core (D < We have carried out an extensive study of the 13 Mpc), supposedly in areas where the ICM is kinematics and morphology of 13 peculiar Virgo too tenuous to be responsible for the stripping of Cluster galaxies (Cort´es et al. 2006; Cort´es et the ISM gas from these galaxies. Of these galaxies al. 2008 in prep). Six galaxies within our sample, only three had large projected distances (θ > 7◦) which includes four tentative foreground galaxies, , whereas the rest had small projected distance are objects with small HI line-widths and therefore (θ < 4◦). Some of the Solanes’s small HI line– “Tully-Fisher deviant”. In order to answer these width galaxies are also Hα Rubin “low rotator” questions, in this paper distances to these galaxies galaxies. are estimated through an approach that relies on In subsequent studies by the Sanchis et al. stellar kinematics1 and is therefore less affected by 1 The National Radio Astronomy Observatory is a fa- 1 Unfortunately, two of the original sample galaxies; NGC cility of the National Science Foundation operated under 4457 and NGC 4698, are unsuitable for deriving their dis- cooperative agreement by Associated Universities, Inc. tances using stellar kinematics since NGC 4457 is almost 2Adjoint Professor 2 environmental effects. Normal galaxies: NGC 4651. • This paper is structured as follows. We describe Truncated/Normal galaxies: NGC 4351, in 2 the galaxy sample. In 3, the method for es- • NGC 4569, NGC 4580, and NGC 4694. timating§ distances via stellar§ kinematics is intro- duced. The detailed application of this method to Truncated/Compact galaxies: NGC 4064, our data, the results on the distances to individ- • NGC 4424, and NGC 4606. ual galaxies of the sample, and the nature of the Anemic or Truncated/Anemic galaxies: NGC “Tully-Fisher deviant” galaxies is studied in 4. • A discussion about the existence of the putative§ 4293, NGC 4429, and NGC 4450. foreground group of galaxies in Virgo as well as of the causes for these galaxies HI-deficiency is pre- Although our main goal is to study galaxy mor- sented in 5. Finally, suggested improvements to phological evolution in the cluster, we have at least the technique,§ summary and concluding remarks six galaxies in the sample with small HI linewidths are found in 8. (NGC 4064, NGC 4351, NGC 4424, NGC 4580, § NGC 4606, and NGC 4694), including four galax- 2. The galaxy sample ies that Sanchis et al. (2004) suggest may belong to a foreground group. The sample consists of eleven peculiar Virgo cluster spiral galaxies, spanning a variety of op- 3. Distance estimations by using stellar tical morphologies (Table 1). Our sample includes kinematics more early type than late type galaxies, since most of the strongly disturbed cluster galaxies are early The determination of distances to HI-deficient types. Morphological selection was made using the galaxies using HI line-widths is vulnerable to R and Hα atlas of Virgo cluster galaxies of Koop- the reduction in the spatial extension of the HI mann et al. (2001), whereas the kinematical selec- disks resulting from environmental effects, and tion made use of the published Hα kinematics on by the possibility that gas velocities be intrinsi- 89 Virgo cluster spirals by Rubin et al. (1999). cally smaller at every radius. On the other hand, the use of stellar kinematics for distance deter- The Virgo cluster has about 110 spiral and mination (“stellar kinematics based distances”, lenticular galaxies brighter than 0.1 L∗ (Bingelli ⊙ hereafter SKB distances) has the advantage that et al. 1985, BST), so we have observed about 12% it is in principle unaffected by physical processes of the brightest Virgo cluster spiral galaxies. The other than gravitational processes, whereas as we sample galaxies are spread around the cluster core, have seen, the kinematics of the gaseous content spanning projected distances ranging from a few can be affected by a number of non-gravitational hundred kiloparsecs to 2.5 Mpc (Fig. 1). physical processes resulting from environmental While the sample selection is not uniform, it interactions (e.g. ICM-ISM stripping). However, is designed to include bright Virgo spirals whose stellar kinematics are far more difficult to measure peculiarities are most poorly understood, and to and analyze than gas velocities, on account of the include representatives of the different Hα types faintness of the stellar component as well as the identified by Koopmann & Kenney (2004).
Recommended publications
  • Pdf, Integral-Field Stellar and Ionized Gas Kinematics of Peculiar Virgo
    The Astrophysical Journal Supplement Series, 216:9 (34pp), 2015 January doi:10.1088/0067-0049/216/1/9 C 2015. The American Astronomical Society. All rights reserved. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES Juan R. Cortes´ 1,2,3,5, Jeffrey D. P. Kenney4, and Eduardo Hardy1,3,5,6 1 National Radio Astronomy Observatory Avenida Nueva Costanera 4091, Vitacura, Santiago, Chile; [email protected], [email protected] 2 Joint ALMA Observatory Alonso de Cordova´ 3107, Vitacura, Santiago, Chile 3 Departamento de Astronom´ıa, Universidad de Chile Casilla 36-D, Santiago, Chile 4 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA; [email protected] Received 2014 March 10; accepted 2014 November 7; published 2014 December 24 ABSTRACT We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O iii]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping.
    [Show full text]
  • Thesis University of Western Australia
    Kinematic and Environmental Regulation of Atomic Gas in Galaxies Jie Li March 2019 Master Thesis University of Western Australia Supervisors: Dr. Danail Obreschkow Dr. Claudia Lagos Dr. Charlotte Welker 20/05/2019 Acknowledgments I would like to thank my supervisors Danail Obreschkow, Claudia Lagos and Charlotte Welker for their guidance and support during this project, Luca Cortese, Robert Dˇzudˇzar and Garima Chauhan for their useful suggestions, my parents for giving me financial support and love, and ICRAR for o↵ering an open and friendly environments. Abstract Recent studies of neutral atomic hydrogen (H i) in nearby galaxies find that all isolated star-forming disk-dominated galaxies, from low-mass dwarfs to massive spirals systems, are H i saturated, in that they carry roughly (within a factor 1.5) as much H i fraction as permitted before this gas becomes gravitationally unstable. By taking this H i saturation for granted, the atomic gas fraction fatm of galactic disks can be predicted as a function of a stability parameter q j/M,whereM and j are the baryonic mass and specific / angular momentum of the disk (Obreschkow et al., 2016). The (logarithmic) di↵erence ∆fq between this predictor and the observed atomic fraction can thus be seen as a physically motivated way of defining a ‘H i deficiency’. While isolated disk galaxies have ∆f 0, q ⇡ objects subject to environmental removal/suppression of H i are expected to have ∆fq > 0. Within this framework, we revisit the H i deficiencies of satellite galaxies in the Virgo cluster (from the VIVA sample), as well as in clusters of the EAGLE simulation.
    [Show full text]
  • Arxiv:0807.3747V2 [Astro-Ph] 13 Sep 2008 Prlsrcuebtltl,I N,Ogigsa Formation
    Draft version October 23, 2018 A Preprint typeset using LTEX style emulateapj v. 08/13/06 THE STELLAR POPULATIONS OF STRIPPED SPIRAL GALAXIES IN THE VIRGO CLUSTER Hugh H. Crowl1 and Jeffrey D.P. Kenney Department of Astronomy, Yale University, New Haven, CT 06520 Draft version October 23, 2018 ABSTRACT We present an analysis of the stellar populations of the gas-stripped outer disks of ten Virgo Clus- ter spiral galaxies, utilizing SparsePak integral field spectroscopy on the WIYN 3.5m telescope and GALEX UV photometry. The galaxies in our sample show evidence for being gas-stripped spiral galaxies, with star formation within a truncation radius, and a passive population beyond the trun- cation radius. We find that all of the galaxies with spatially truncated star formation have outer disk stellar populations consistent with star formation ending within the last 500 Myr. The synthe- sis of optical spectroscopy and GALEX observations demonstrate that star formation was relatively constant until the quenching time, after which the galaxies passively evolved. Large starbursts at the time of quenching are excluded for all galaxies, but there is evidence of a modest starburst in at least one galaxy. For approximately half of our galaxies, the timescales derived from our observations are consistent with galaxies being stripped in or near the cluster core, where simple ram-pressure estimates can explain the observed stripping. However, the other half of our sample galaxies were clearly stripped outside the cluster core. Such galaxies provide evidence that the intra-cluster medium is not static and smooth. For three of the most recently stripped galaxies, there are estimates for the stripping timescales from detailed gas stripping simulations.
    [Show full text]
  • Extraplanar HII Regions in the Edge-On Spiral Galaxies NGC 3628 and NGC 4522? Y
    A&A 605, A5 (2017) DOI: 10.1051/0004-6361/201730589 Astronomy & c ESO 2017 Astrophysics Extraplanar HII regions in the edge-on spiral galaxies NGC 3628 and NGC 4522? Y. Stein1, D. J. Bomans1; 2, A. M. N. Ferguson3, and R.-J. Dettmar1; 2 1 Astronomisches Institut (AIRUB), Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany e-mail: [email protected] 2 Research Department: Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 3 Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK Received 9 February 2017 / Accepted 30 May 2017 ABSTRACT Context. Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are difficult to make. Young massive stars and Hii regions in the halos of galaxies are potential tracers for accretion and/or outflows of gas. Aims. Gas phase abundances of three Hii regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analyzing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. Methods. With the measured flux densities of the optical nebular emission lines, we derived the oxygen abundance 12 + log(O/H) for the three extraplanar Hii regions. The analysis was based on one theoretical and two empirical strong-line calibration methods. Results. The resulting oxygen abundances of the extraplanar Hii regions are comparable to the disk Hii regions in one case and are a little lower in the other case.
    [Show full text]
  • Celebrating the Wonder of the Night Sky
    Celebrating the Wonder of the Night Sky The heavens proclaim the glory of God. The skies display his craftsmanship. Psalm 19:1 NLT Celebrating the Wonder of the Night Sky Light Year Calculation: Simple! [Speed] 300 000 km/s [Time] x 60 s x 60 m x 24 h x 365.25 d [Distance] ≈ 10 000 000 000 000 km ≈ 63 000 AU Celebrating the Wonder of the Night Sky Milkyway Galaxy Hyades Star Cluster = 151 ly Barnard 68 Nebula = 400 ly Pleiades Star Cluster = 444 ly Coalsack Nebula = 600 ly Betelgeuse Star = 643 ly Helix Nebula = 700 ly Helix Nebula = 700 ly Witch Head Nebula = 900 ly Spirograph Nebula = 1 100 ly Orion Nebula = 1 344 ly Dumbbell Nebula = 1 360 ly Dumbbell Nebula = 1 360 ly Flame Nebula = 1 400 ly Flame Nebula = 1 400 ly Veil Nebula = 1 470 ly Horsehead Nebula = 1 500 ly Horsehead Nebula = 1 500 ly Sh2-106 Nebula = 2 000 ly Twin Jet Nebula = 2 100 ly Ring Nebula = 2 300 ly Ring Nebula = 2 300 ly NGC 2264 Nebula = 2 700 ly Cone Nebula = 2 700 ly Eskimo Nebula = 2 870 ly Sh2-71 Nebula = 3 200 ly Cat’s Eye Nebula = 3 300 ly Cat’s Eye Nebula = 3 300 ly IRAS 23166+1655 Nebula = 3 400 ly IRAS 23166+1655 Nebula = 3 400 ly Butterfly Nebula = 3 800 ly Lagoon Nebula = 4 100 ly Rotten Egg Nebula = 4 200 ly Trifid Nebula = 5 200 ly Monkey Head Nebula = 5 200 ly Lobster Nebula = 5 500 ly Pismis 24 Star Cluster = 5 500 ly Omega Nebula = 6 000 ly Crab Nebula = 6 500 ly RS Puppis Variable Star = 6 500 ly Eagle Nebula = 7 000 ly Eagle Nebula ‘Pillars of Creation’ = 7 000 ly SN1006 Supernova = 7 200 ly Red Spider Nebula = 8 000 ly Engraved Hourglass Nebula
    [Show full text]
  • The Virgo Supercluster
    12-1 How Far Away Is It – The Virgo Supercluster The Virgo Supercluster {Abstract – In this segment of our “How far away is it” video book, we cover our local supercluster, the Virgo Supercluster. We begin with a description of the size, content and structure of the supercluster, including the formation of galaxy clusters and galaxy clouds. We then take a look at some of the galaxies in the Virgo Supercluster including: NGC 4314 with its ring in the core, NGC 5866, Zwicky 18, the beautiful NGC 2841, NGC 3079 with is central gaseous bubble, M100, M77 with its central supermassive black hole, NGC 3949, NGC 3310, NGC 4013, the unusual NGC 4522, NGC 4710 with its "X"-shaped bulge, and NGC 4414. At this point, we have enough distant galaxies to formulate Hubble’s Law and calculate Hubble’s Red Shift constant. From a distance ladder point of view, once we have the Hubble constant, and we can measure red shift, we can calculate distance. So we add Red Shift to our ladder. Then we continue with galaxy gazing with: NGC 1427A, NGC 3982, NGC 1300, NGC 5584, the dusty NGC 1316, NGC 4639, NGC 4319, NGC 3021 with is large number of Cepheid variables, NGC 3370, NGC 1309, and 7049. We end with a review of the distance ladder now that Red Shift has been added.} Introduction [Music: Antonio Vivaldi – “The Four Seasons – Winter” – Vivaldi composed "The Four Seasons" in 1723. "Winter" is peppered with silvery pizzicato notes from the high strings, calling to mind icy rain. The ending line for the accompanying sonnet reads "this is winter, which nonetheless brings its own delights." The galaxies of the Virgo Supercluster will also bring us their own visual and intellectual delight.] Superclusters are among the largest structures in the known Universe.
    [Show full text]
  • Spitzer Observations of Environmental Effects on Virgo Cluster Galaxies
    The Evolving ISM in the Milky Way & Nearby Galaxies Spitzer Observations of Environmental Effects on Virgo Cluster Galaxies Jeffrey D. P. Kenney1, O. Ivy Wong1, Anne Abramson1, Justin H. Howell2, Eric J. Murphy2 and George X. Helou2 1Astronomy Department, Yale University, P.O. Box 208101 New Haven, CT 06520-8101 2Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 [email protected] ABSTRACT We present initial results from SPITSOV, the Spitzer Survey of Virgo, which includes MIPS and IRAC observations for a carefully selected sample of 44 Virgo cluster spiral and peculiar galaxies. SPITSOV is part of a multiwavelength cam- paign to understand the effects of the cluster environment on galaxy evolution. These Virgo galaxies are different from galaxies outside of clusters, since most of them have been significantly modified by their environment. The SPITSOV data can serve the community as the Spitzer sample of nearby cluster spiral galaxies, a complement to the SINGS data for nearby non-cluster galaxies. In this paper we describe the sample, the goals of the study, and present pre- liminary results in 3 areas: 1. Evidence for ram pressure-induced disturbances in radio morphologies based on changes in the FIR-radio (70µm-20cm) correlation. 2. Evidence for ram-pressure stripped extraplanar gas tails from comparisons of dust/PAH (8µm) emission and optical dust extinction. 3. Evidence for unob- scured star-forming regions with large ratios of Hα to 24µm emission in some galaxies due to ram pressure stripping of dust. Subject headings: clusters: general | galaxy clusters: individual (Virgo) 1. Introduction Studies of galaxies near and far show broad evidence for the basic picture of hierarchical galaxy formation, in which large galaxies assemble from smaller pieces, and interactions { 2 { play a large role in evolution.
    [Show full text]
  • ARRAKIS: Atlas of Resonance Rings As Known in The
    Astronomy & Astrophysics manuscript no. arrakis˙v12 c ESO 2018 September 28, 2018 ARRAKIS: atlas of resonance rings as known in the S4G⋆,⋆⋆ S. Comer´on1,2,3, H. Salo1, E. Laurikainen1,2, J. H. Knapen4,5, R. J. Buta6, M. Herrera-Endoqui1, J. Laine1, B. W. Holwerda7, K. Sheth8, M. W. Regan9, J. L. Hinz10, J. C. Mu˜noz-Mateos11, A. Gil de Paz12, K. Men´endez-Delmestre13 , M. Seibert14, T. Mizusawa8,15, T. Kim8,11,14,16, S. Erroz-Ferrer4,5, D. A. Gadotti10, E. Athanassoula17, A. Bosma17, and L.C.Ho14,18 1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland e-mail: [email protected] 2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea 4 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain 6 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 7 European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noorwijk, the Netherlands 8 National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Space Telescope Science Institute, 3700 San Antonio Drive, Baltimore, MD 21218, USA 10 European Southern Observatory, Casilla 19001, Santiago 19, Chile 11 MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Departamento de Astrof´ısica,
    [Show full text]
  • MIPS 24160 M Photometry for the Herschelspire Local Galaxies
    Mon. Not. R. Astron. Soc. 423, 197–212 (2012) doi:10.1111/j.1365-2966.2012.20784.x MIPS 24–160 µm photometry for the Herschel-SPIRE Local Galaxies Guaranteed Time Programs G. J. Bendo,1,2 F. Galliano3 andS.C.Madden3 1UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL 2Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ 3Laboratoire AIM, CEA, Universite´ Paris Diderot, IRFU/Service d’Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France Accepted 2012 February 20. Received 2012 January 23; in original form 2011 November 14 ABSTRACT We provide an overview of ancillary 24-, 70- and 160-µm data from the Multiband Imaging Photometer for Spitzer (MIPS) that are intended to complement the 70–500 µm Herschel Space Observatory photometry data for nearby galaxies obtained by the Herschel-SPIRE Local Galaxies Guaranteed Time Programs and the Herschel Virgo Cluster Survey. The MIPS data can be used to extend the photometry to wavebands that are not observed in these Herschel surveys and to check the photometry in cases where Herschel performs observations at the same wavelengths. Additionally, we measured globally integrated 24–160 µm flux densities for the galaxies in the sample that can be used for the construction of spectral energy distributions. Using MIPS photometry published by other references, we have confirmed that we are obtaining accurate photometry for these galaxies. Key words: catalogues – galaxies: photometry – infrared: galaxies. (SEDs) of the dust emission and to map the distribution of cold 1 INTRODUCTION dust within these galaxies.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (And Beyond
    Publication Year 2018 Acceptance in OA@INAF 2020-11-02T17:16:45Z Title The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) Authors CANTIELLO, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; et al. DOI 10.3847/1538-4357/aab043 Handle http://hdl.handle.net/20.500.12386/28125 Journal THE ASTROPHYSICAL JOURNAL Number 856 The Astrophysical Journal, 856:126 (18pp), 2018 April 1 https://doi.org/10.3847/1538-4357/aab043 © 2018. The American Astronomical Society. All rights reserved. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) Michele Cantiello1 , John P. Blakeslee2 , Laura Ferrarese2,3 , Patrick Côté2, Joel C. Roediger2 , Gabriella Raimondo1, Eric W. Peng4,5 , Stephen Gwyn2, Patrick R. Durrell6 , and Jean-Charles Cuillandre7 1 INAF Osservatorio Astronomico d’Abruzzo, via Maggini, snc, I-64100, Italy; [email protected] 2 National Research Council of Canada, Herzberg Astronomy and Astrophysics Research Centre, Victoria, BC, Canada 3 Gemini Observatory, Northern Operations Center, 670 N.A’ohoku Place, Hilo, HI 96720, USA 4 Department of Astronomy, Peking University, Beijing 100871, People’s Republic of China 5 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China 6 Department of Physics and Astronomy, Youngstown
    [Show full text]