Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy

Total Page:16

File Type:pdf, Size:1020Kb

Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy Proceedings of an international conference held in Málaga, Spain, 26–30 March 2001, organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization RADIOLOGICAL PROTECTION OF PATIENTS IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, NUCLEAR MEDICINE AND RADIOTHERAPY a PROCEEDINGS SERIES RADIOLOGICAL PROTECTION OF PATIENTS IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, NUCLEAR MEDICINE AND RADIOTHERAPY PROCEEDINGS OF AN INTERNATIONAL CONFERENCE HELD IN MÁLAGA, SPAIN, 26–30 MARCH 2001, ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND CO-SPONSORED BY THE EUROPEAN COMMISSION, THE PAN AMERICAN HEALTH ORGANIZATION AND THE WORLD HEALTH ORGANIZATION INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2001 c Permission to reproduce or translate the information contained in this publica- tion may be obtained by writing to the International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria. © IAEA, 2001 VIC Library Cataloguing in Publication Data International Conference on Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy (2001 : Malaga, Spain) Radiological protection of patients in diagnostic and interventional radiol- ogy, nuclear medicine and radiotherapy : proceedings of an international con- ference held in Malaga, Spain, 26–30 March 2001 / organized by the International Atomic Energy Agency...[et al.]. — Vienna : The Agency, 2001. p. ; 24 cm. — (Proceedings series, ISSN 0074–1884) STI/PUB/1113 ISBN 92–0–101401–5 Includes bibliographical references. 1. Diagnosis, Radioscopic—Safety measures—Congresses. 2. Interventional radiology—Safety measures—Congresses. 3. Nuclear medicine—Safety measures—Congresses. 4. Radiotherapy—Safety measures—Congresses. I. International Atomic Energy Agency. II. Series. VICL 01–00268 Printed by the IAEA in Austria September 2001 STI/PUB/1113 d FOREWORD Medical applications of ionizing radiation (or ‘radiation’ for short) are accept- ed worldwide as essential tools for protecting and improving human health. However, they also represent by far the largest human-made source of radiation exposure. The United Nations Scientific Committee on the Effects of Atomic Radiation estimates that diagnostic medical applications of radiation account for about 95% of the expo- sure to radiation from human-made sources and about 12% of total exposure. Furthermore, there is certain to be a continuing increase in the prevalence of medical applications of radiation, including high dose procedures, as in the following cases: — Radiological interventional procedures, which are increasingly being used to replace surgery, can lead to very high radiation doses, both to patients and to medical staff, in some cases exceeding thresholds for deterministic effects. — The use of helical computed tomography (CT) has improved the diagnostic quality of CT examinations, and the procedures are faster and more flexible than with non-helical equipment. However, the increased number of procedures and the increased number of scans per procedure may lead to a significant increase in radiation exposure to patients. In diagnosis, the radiological protection objective is to keep doses as low as reasonably achievable while obtaining the necessary diagnostic information. According to the International Commission on Radiological Protection, doses from similar radiological investigations can differ by as much as two orders of magnitude. There is therefore considerable scope for dose reduction in diagnostic and interven- tional radiology and also in nuclear medicine. In therapy, the objective is to ensure that the target tissue is given the prescribed dose while minimizing the dose to sur- rounding healthy tissue. If the dose, dose distribution or dose fractionation is signif- icantly different from that prescribed, serious consequences can arise, as in recent incidents involving the accidental exposure of radiotherapy patients. The application of well designed quality assurance programmes is necessary in order to ensure the protection of patients. In October 1999 the IAEA General Conference issued resolution GC(43)/RES/12 requesting the Secretariat of the IAEA “to organize as soon as feasible, in close collab- oration with the World Health Organization and within the Agency’s current budgetary resources, an international meeting on the radiological protection of patients for the pur- pose of an exchange of information and the development of recommendations, as appropriate, regarding the radiological protection of patients”. In response to that request, the IAEA organized the International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy, which was co-sponsored by the European e Commission, the Pan American Health Organization and the World Health Organization, and which was hosted by the Government of Spain. The conference took take place in Torremolinos (Málaga), Spain, from 26 to 30 March 200l. Other international organizations and professional societies co-operated in the conference, namely the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP), the International Organization of Medical Physics (IOMP), the International Radiation Protection Association (IRPA), the International Society of Radiation Oncology (ISRO), the International Society of Radiographers and Radiological Technologists (ISRRT), the International Society of Radiology (ISR) and the World Federation of Nuclear Medicine and Biology (WFNMB). The conference was the first of its kind specifically focused on the radiological protection of patients. Apart from the opening and closing sessions, the conference pro- gramme comprised background sessions with papers by representatives of the co-spon- soring organizations and the professional societies, a briefing session with five papers to introduce the subject of the conference, 13 topical sessions and six round tables. The proceedings contain all the presentations and the summaries of all discus- sions, and also include the opening addresses and the conclusions and recommenda- tions. The contributed papers are provided on a CD-ROM which accompanies these proceedings. The IAEA gratefully acknowledges the support and generous hospitality extended to the conference participants by the Spanish authorities. EDITORIAL NOTE The Proceedings have been edited by the editorial staff of the IAEA to the extent considered necessary for the reader’s assistance. The views expressed remain, however, the responsibility of the named authors or participants. In addition, the views are not necessarily those of the governments of the nominating Member States or of the nominating organizations. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judge- ment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. Material prepared by authors who are in contractual relation with governments is copyrighted by the IAEA, as publisher, only to the extent permitted by the appropriate national regulations. f CONTENTS EXECUTIVE SUMMARY . i OPENING SESSION Opening Address C. Villalobos Talero . 3 Opening Address J.Á. Azuara . 7 Opening Address A. Díez de los Ríos Delgado . 11 Opening Address R. Ruiz Cruces . 13 Opening Address F.A. Mettler . 15 Opening Address A.J. González . 17 Opening Address K. Schnuer . 23 Opening Address C. Borrás . 27 Opening Address H. Ostensen . 31 GLOBAL VIEW ON THE RADIOLOGICAL PROTECTION OF PATIENTS (Background Session) Role of the IAEA in the radiological protection of patients P. Ortiz López, A.D. Wrixon, A. Meghzifene, J. Izewska . 35 EU laws and guidance reinforce the radiological protection of patients M. Sarró Vaquero, D. Teunen . 47 Global view on the radiological protection of patients: PAHO position paper C. Borrás . 55 Global view on the radiological protection of patients: The World Health Organization position H. Ostensen . 67 The role of the United Nations Scientific Committee on the Effects of Atomic Radiation in relation to medical radiation exposures P.C. Shrimpton . 71 g International Commission on Radiological Protection F.A. Mettler . 77 Role and responsibilities of medical physicists in radiological protection of patients A. Niroomand-Rad . 79 The activities of the International Radiation Protection Association in relation to the radiological protection of patients G.A.M. Webb . 91 International Society of Radiology and Radiation Protection C.G. Standertskjöld-Nordenstam . 95 Global view
Recommended publications
  • Radiation Protection in Paediatric Radiology at Medical Physicists and Regulators
    Safety Reports Series The Fundamental Safety Principles and the IAEA's General Safety Rquirements publication, Radiation Protection and Safety of Radiation Safety Reports Series Sources: International Basic Safety Standards (BSS) require the radiological protection of patients undergoing medical exposures No.71 through justification of the procedures involved No. and through optimization. This publication 71 provides guidance to radiologists, other clinicians and radiographers/technologists involved in diagnostic procedures using ionizing radiation with children and adolescents. It is also aimed Radiation Protection in Paediatric Radiology at medical physicists and regulators. The focus is on the measures necessary to provide protection from the effects of radiation using the principles established in the BSS and according to the priority given to this issue. Radiation Protection in Paediatric Radiology INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–125710–9 ISSN 1020–6450 RELATED PUBLICATIONS IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS RADIATION PROTECTION IN NEWER MEDICAL IMAGING TECHNIQUES: PET/CT IAEA SAFETY STANDARDS Safety Reports Series No. 58 STI/PUB/1343 (41 pp.; 2008) Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt ISBN 978–92–0–106808–8 Price: €28.00 standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in the APPLYING RADIATION SAFETY STANDARDS IN DIAGNOSTIC IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport RADIOLOGY AND INTERVENTIONAL PROCEDURES USING X RAYS safety and waste safety.
    [Show full text]
  • THE FUTURE of INTERVENTIONAL RADIOLOGY Introduction
    Volume 13 No 3 / Jun 2017 Quarterly publication of The Royal Australian and New Zealand College of Radiologists THE FUTURE OF INTERVENTIONAL RADIOLOGY Introduction A Day in the Life of a Modern Interventional Radiology Unit Interventional radiology (IR) has been It’s 7:30am on Wednesday morning and many of them with treatment histories a dynamic field since its inception the HCC meeting is about to start. The stretching back years. We have come over 50 years ago through the work room is filled with gastroenterologists, a a long way from an average life of early pioneers in the field. In hepatic surgeon, oncologists, diagnostic expectancy of seven months. 1964, Charles Dotter described and and interventional radiologists, IR By 8:30am, it’s time to get going on the performed the first angioplasty and and HCC nursing staff and keen first case of the day. He is a 54-year- in the years that followed, he and radiographers. It’s a relatively new old hypertensive vasculopath with other innovators brought about a meeting borne out of the UGI meeting calcified vessels and critical stenoses revolution in procedural medicine with that was at risk of stretching to several of his renal arteries. He was seen in the development of catheter directed hours by the prospect of an ever- the interventional clinic several weeks therapies and other minimally invasive increasing tide of chronic liver disease before for a pre-procedural assessment image guided techniques. (viral and NASH) predisposing to HCC. where he was fully worked up and Today, modern IR and the healthcare The first patient is a 65-year-old female paperwork completed so there are no system in which it operates is with cirrhosis, Child-Pugh A and ECOG hold ups getting him on the table.
    [Show full text]
  • Interventional Radiology Curriculum for Medical Students
    Interventional Radiology Curriculum for Medical Students Second Edition A brief overview of the most common clinical R conditions C SE handled by IRs May 2019 Editorial Board Editor in Chief Christoph Binkert Editors Roberto Cazzato Jan Jaap Janssen Gregory Makris Arash Najafi Fatemeh Sakhinia CIRSE Central Office Neutorgasse 9/6 1010 Vienna Austria Phone: +43 1 904 2003 Fax: +43 1 904 2003 30 E-mail: [email protected] www.cirse.org © All rights reserved by the Cardiovascular and Interventional Radiological Society of Europe / 2019 Table of Contents Introduction 2 1 Vascular IR 3 1.1 Peripheral Vascular Disease 3 1.2 Aneurysms 4 1.3 Venous Disease 5 1.3.1 Venous Thromboembolic Disease 5 1.3.2 Chronic Venous Obstruction 5 1.4 Embolisation for Benign Conditions 6 1.4.1 Uterine Fibroid Embolisation 6 1.4.2 Prostate Artery Embolisation 6 1.4.3 Gastrointestinal Bleeding 7 1.4.4 Gonadal Vein Embolisation 7 1.5 Access 8 1.5.1 Central Venous Access 8 1.5.2 Dialysis Shunt 8 2 Non-Vascular IR 9 2.1 Biopsies and Drainages 9 2.2 Biliary Procedures 9 2.3 Genitourinary Interventions 10 3 Interventional Oncology 11 3.1 Ablative Therapies 11 3.1.1 Liver Tumour Ablation 11 3.1.2 Renal Tumour Ablation 11 3.1.3 Lung Tumour Ablation 12 3.2 Liver Malignancy Embolisation 13 4 Musculoskeletal Interventions 14 4.1 Vertebral Compression Fractures and Vertebral Augmentation 14 4.2 Lower Back Pain 15 References 16 CIRSE and Interventional Radiology 18 Supporting IR’s Next Generation 19 Introduction In order to make medical students aware of the ever-increasing role of IR in hospital medicine and to provide guidance on the learning outcomes required to prepare medical students for their role during residency years, CIRSE published the first edition of the Interventional Radiology Curriculum for Medical Students in 2012.
    [Show full text]
  • Interventional Radiology in the Diagnosis and Treatment of Solid Tumors
    THE ROLE OF INTERVENTIONAL RADIOLOGY IN THE DIAGNOSIS AND TREATMENT OF SOLID TUMORS Victoria L. Anderson, MSN, CRNP, FAANP OBJECTIVES •Using Case Studies and Imaging examples: 1) Discuss the role interventional (IR) procedures to aid in diagnosing malignancy 2) Current and emerging techniques employed in IR to cure and palliate solid tumor malignancies will be explored Within 1 and 2 will be a discussion of research in the field of IR Q+A NIH Center for Interventional Oncology WHAT IS INTERVENTIONAL RADIOLOGY? • Considered once a subspecialty of Diagnostic Radiology • Now its own discipline, it serves to offer minimally invasive procedures using state-of- the-art modern medical advances that often replace open surgery (Society of Interventional Radiology) NIH Center for Interventional Oncology CHARLES T. DOTTER M.D. (1920-1985) • Father of Interventional Radiologist • Pioneer in the Field of Minimally Invasive Procedures (Catheterization) • Developed Continuous X-Ray Angio- Cardiography • Performed First If a plumber can do it to pipes, we can do it to blood vessels.” Angioplasty (PTCA) Charles T. Dotter M.D. Procedure in 1964. • Treated the first THE ROOTS OF patient with catheter assisted vascular INTERVENTIONAL dilation RADIOLOGY NIH Center for Interventional Oncology THE “DO NOT FIX” CONSULT THE DO NOT FIX PATIENT SCALES MOUNT HOOD WITH DR. DOTTER 1965 NIH Center for Interventional Oncology •FIRST EMBOLIZATION FOR GI BLEEDING •ALLIANCE WITH •FIRST BALLOON BILL COOK •HIGH SPEED PERIPHERAL DEVELOPED RADIOGRAPHY ANGIOPLASTY-- NUMEROUS
    [Show full text]
  • Five-Year Results of a Merger Between Vascular Surgeons and Interventional Radiologists in a University Medical Center
    From the Eastern Vascular Society Five-year results of a merger between vascular surgeons and interventional radiologists in a university medical center Richard M. Green, MD, and David Waldman, MD, PhD, for the Center for Vascular Disease* Rochester, NY Objectives: We examined economic and practice trends after 5 years of a merger between vascular surgeons and interventional radiologists. Methods: In 1998 a merger between the Division of Vascular Surgery and the Section of Interventional Radiology at the University of Rochester established the Center for Vascular Disease (CVD). Business activity was administered from the offices of the vascular surgeons. Results: In 1998 the CVD included five vascular surgeons and three interventional radiologists, who generated a total income of $5,789,311 (34% from vascular surgeons, 24% from interventional radiologists, 42% from vascular laborato- ries). Vascular surgeon participation in endoluminal therapy was limited to repair of abdominal aortic aneurysms (AAAs). Income was derived from 1011 major vascular procedures, 10,510 catheter-based procedures in 3286 patients, and 1 inpatient and 3 outpatient vascular laboratory tests. In 2002 there were six vascular surgeons (five, full-time equivalent) and four interventional radiologists, and total income was $6,550,463 despite significant reductions in unit value reimbursement over the 5 years, a 4% reduction in the number of major vascular procedures, and a 13% reduction in income from vascular laboratories. In 2002 the number of endoluminal procedures increased to 16,026 in 7131 patients, and contributions to CVD income increased from 24% in 1998 to 31% in 2002. Three of the six vascular surgeons performed endoluminal procedures in 634 patients in 2002, compared with none in 1998.
    [Show full text]
  • Digital and Advanced Imaging Equipment
    CHAPTER 9 Digital and Advanced Imaging Equipment KEY TERMS active matrix array direct-to-digital radiographic systems photostimulated luminescence amorphous dual-energy x-ray absorptiometry picture archiving and communication analog-to-digital converter F-center system aspect ratio fill factor preprocessing cinefluorography frame rate postprocessing computed radiography image contrast refresh rate detective quantum efficiency image enhancement special procedures laboratory Digital Imaging and Communications image management and specular reflection in Medicine group communication system teleradiology digital fluoroscopy image restoration thin-film transistor digital radiography interpolation window level digital subtraction angiography liquid crystal display window width digital x-ray radiogrammetry Nyquist frequency OBJECTIVES At the completion of this chapter the reader should be able to do the following: • Describe the basic methods of obtaining digital cathode-ray tube cameras, videotape and videodisc radiographs recorders, and cinefluorographic equipment and discuss • State the advantages and disadvantages of digital the quality control procedures for each radiography versus conventional film/screen • Describe the various types of electronic display devices radiography and discuss the applicable quality control procedures • Discuss the quality control procedures for evaluating • Explain the basic image archiving and management digital radiographic systems networks and discuss the applicable quality control • Describe the basic methods
    [Show full text]
  • Mastering Interventional Radiology & Cardiology Online Training
    Mastering Interventional Radiology & Cardiology Online Training Program FAQs Which procedures are covered in the course? The course is designed to cover all procedures types for the CIRCC exam: catheterization coding, diagnostic angiography/venography, angioplasty, stent, atherectomy, embolization, thrombectomy, thrombolysis, infusion therapy, IVC filters, TIPS, venous organ blood sampling, transcatheter foreign body removal, dialysis circuit coding, central venous access devices, tunneled peritoneal catheters, endovascular repair, diagnostic cardiac catheterization, coronary angioplasty, coronary stent, coronary atherectomy, coronary thrombectomy, vertebroplasty, kyphoplasty, facet joint injections, nerve blocks, epidural injections, epidurography, discography, myelography, lumbar puncture, urinary, gastrointestinal, biliary, biopsy, drainage, aspiration, sclerotherapy, ablation, arthrography. eDoes th course cover ICD‐10‐CM or ICD‐10‐PCS coding? No, only CPT® coding is covered in the course. Are there any pre‐requisites for enrolling in the course? There are no required pre‐requisites, however; it is strongly recommended that enrollees have hands on coding experience in one or more areas as well as at least one core coding credential (CCS, CCS‐P, CPC, COC, CIC, etc.) Prior to registering enrollees should have knowledge of anatomy and medical terminology. When is the course open for enrollment? Until recently we only opened enrollment once or twice per year. To better serve potential customers, we decided to remove the specific enrollment deadlines, however, we are still limiting the number of enrollees we will allow in the course at any given time. The number of seats available will vary depending upon how many enrollees complete the course early and how much support current students require during the studies. We want to be sure that everyone who enrolls has the best experience possible and that we can provide them the time and attention needed to be successful in the course.
    [Show full text]
  • Anesthesia in Interventional Radiology
    medigraphic Artemisaen línea E A NO D NEST A ES Mexicana de IC IO EX L M O G O I ÍA G A E L . C C O . C Revista A N A T Í E Anestesiología S G S O O L C IO I S ED TE A ES D M AN EXICANA DE PROFESORES EXTRANJEROS Vol. 32. Supl. 1, Abril-Junio 2009 pp S172-S176 Anesthesia in interventional radiology Elizabeth AM Frost* *Professor, Mount Sinai Medical Center, New York, USA CASE Exclusion criteria An 88 year old female, 62 kg, with a past medical history • Vertebral body height loss 100% significant for early Alzheimer’s disease, hypothyroidism, • Posterior wall involvement gastroesophageal reflux disease and osteoporosis presented • Involvement of the spinal cord for percutaneous vertebroplasty. She had painfully disabling • Osteolytic metastatic lesion osteoporotic at T12-L2 fractures. She was scheduled as a • Bleeding diathesis same day admit for a 23 hour hospital stay • Inability to undergo emergency decompressive surgery Osteoporosis Stages of PV • Causes 1 million vertebral fractures annually in the US, affects 10 million • Vertebral puncture (access site) • Characterized by low bone mass and structural deteriora- • Spinal biopsy (rule out metastasis) tion of bone tissue • Mainly elderly, white women • Risk factors: poor nutrition, smoking, alcohol, steroids • Diagnose by bone density scan Vertebroplasty (PV) • Described in 1984 by Deramond • Palliative treatment for osteoporosis • Minimally invasive, needs sedation • Injection of polymethylmethacrylate to vertebral body • Fluoroscopic guidance • Dramatic decrease of pain in > 2000 case studies Selection criteriawww.medigraphic.com • New fracture • Pain refractory to medical management • Respiratory compromise • Potential for worsening of disease Vertebral body puncture S172 Revista Mexicana de Anestesiología Frost EAM.
    [Show full text]
  • Radiation and Your Patient: a Guide for Medical Practitioners
    RADIATION AND YOUR PATIENT: A GUIDE FOR MEDICAL PRACTITIONERS A web module produced by Committee 3 of the International Commission on Radiological Protection (ICRP) What is the purpose of this document ? In the past 100 years, diagnostic radiology, nuclear medicine and radiation therapy have evolved from the original crude practices to advanced techniques that form an essential tool for all branches and specialties of medicine. The inherent properties of ionising radiation provide many benefits but also may cause potential harm. In the practice of medicine, there must be a judgement made concerning the benefit/risk ratio. This requires not only knowledge of medicine but also of the radiation risks. This document is designed to provide basic information on radiation mechanisms, the dose from various medical radiation sources, the magnitude and type of risk, as well as answers to commonly asked questions (e.g radiation and pregnancy). As a matter of ease in reading, the text is in a question and answer format. Interventional cardiologists, radiologists, orthopaedic and vascular surgeons and others, who actually operate medical x-ray equipment or use radiation sources, should possess more information on proper technique and dose management than is contained here. However, this text may provide a useful starting point. The most common ionising radiations used in medicine are X, gamma, beta rays and electrons. Ionising radiation is only one part of the electromagnetic spectrum. There are numerous other radiations (e.g. visible light, infrared waves, high frequency and radiofrequency electromagnetic waves) that do not posses the ability to ionize atoms of the absorbing matter.
    [Show full text]
  • Anesthesia for Interventional Radiology Mary Landrigan-Ossar & Craig D
    Pediatric Anesthesia ISSN 1155-5645 REVIEW ARTICLE Anesthesia for interventional radiology Mary Landrigan-Ossar & Craig D. McClain Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA Keywords Summary radiology; interventional; arteriovenous Pediatric patients in the neurointerventional radiology setting pose the dual malformations; cerebral angiography; challenges of caring for relatively sick patients in the outfield environment. embolization; therapeutic; radiocontrast For safe and successful practice, the anesthesiologist must not only under- agents; moyamoya disease stand the nuances of pediatric anesthesia and the physiologic demands of the Correspondence cerebral lesions. They must also help maintain a team-based approach to safe, Mary Landrigan-Ossar MD, PhD, compassionate care of the child in this challenging setting. In this review arti- Department of Anesthesiology, cle, we summarize key aspects of success for several of these topics. Perioperative and Pain Medicine, Boston’s Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Email: mary.landrigan-ossar@childrens. harvard.edu Section Editor: Sulpicio Soriano Accepted 25 March 2014 doi:10.1111/pan.12411 procedures requiring anesthesia, both diagnostic and Introduction therapeutic, which are performed on the pediatric The care of pediatric patients in interventional radiology patient in the neurointerventional radiology suite. (IR) exemplifies the credo that ‘children are not small adults’. In the adult IR suite, an anesthesiologist is a rar- Safety ity, and the vast majority of procedures are accom- plished in patients who are awake or lightly sedated. Patient and provider safety must both be considered This is not the case in the pediatric neurointerventional when working in the neurointerventional suite.
    [Show full text]
  • The Distinguished History of Radiology at the University of Michigan
    The Distinguished History of Radiology at the University of Michigan On the Occasion of the Centennial Celebration of the Discovery of X-rays William Martel Fred Jenner Hodges Professor Department of Radiology 1 The Distinguished History of Radiology at the University of Michigan On the Occasion of the Centennial Celebration of the Discovery of X-rays by William Martel Fred Jenner Hodges Professor Department of Radiology 2 To my beloved wife, Rhoda, and our wonderful children, Lisa, Pamela, Caryn, Jonathan and David. Acknowledgements The Bentley Historical Library, University of Michigan, was a major information resource for this paper. I appreciate the information and advice provided by N. Reed Dunnick, Barry H. Gross, Nicholas H. Steneck, Terry M. Silver and Donna C. Eder and thank Horace W. Davenport for permitting wide use of material from his book [4] and Kallie Bila Michels, Judalyn G. Seling, Cynthia Sims-Holmes and Diane D. Williams for their assistance in preparing the manuscript. I also appreciate the editorial assistance of Keri Ellis of the American Roentgen Ray Society. Finally, I regret the inability, for lack of space, to cite many individuals whose accomplishments contributed to the rich heritage of the department. Some of this material has been previously published (Martel W. The Rich Tradition of Radiology at the University of Michigan. AJR 1995;165:995-1002) and is reproduced here with permission of the American Roentgen Ray Society. 3 The Distinguished History of Radiology at the University of Michigan As we celebrate the centennial of Roentgen's discovery of X-rays, it is appropriate to reflect on the events at the University of Michigan that arose from that discovery and on the significant influence the Department of Radiology subsequently had on the emergence of radiology as an important, scientific medical specialty.
    [Show full text]
  • Interventional Fluoroscopy Reducing Radiation Risks for Patients and Staff
    NATIONAL CANCER INSTITUTE THE SOCIETY OF INTERVENTIONAL RADIOLOGY Interventional Fluoroscopy Reducing Radiation Risks for Patients and Staff Introduction CONTENTS Interventional fluoroscopy uses ionizing radiation to guide small instruments such as catheters through blood vessels or other pathways in the body. Interventional fluoroscopy represents a Introduction 1 tremendous advantage over invasive surgical procedures, because Increasing use and it requires only a very small incision, substantially reduces the complexity of risk of infection and allows for shorter recovery time compared interventional fluoroscopy 1 to surgical procedures. These interventions are used by a rapidly expanding number of health care providers in a wide range of Determinants of radiation medical specialties. However, many of these specialists have little dose from interventional fluoroscopy 2 training in radiation science or protection measures. The growing use and increasing complexity of these procedures Radiation risks from interventional fluoroscopy 3 have been accompanied by public health concerns resulting from the increasing radiation exposure to both patients and health care Strategies to optimize personnel. The rise in reported serious skin injuries and the radiation exposure from expected increase in late effects such as lens injuries and interventional fluoroscopy 4 cataracts, and possibly cancer, make clear the need for informa- Physician-patient tion on radiation risks and on strategies to control radiation communication before and exposures to patients and health care providers. This guide after interventional fluoroscopy 4 discusses the value of these interventions, the associated radiation risk and the importance of optimizing radiation dose. Dosimetry records and follow up 4 Education and training 5 Increasing use and complexity of interventional Conclusion 5 fluoroscopy Reference list 5 In 2002, an estimated 657,000 percutaneous transluminal coronary angioplasty (PTCA) procedures were performed in adults in the United States.
    [Show full text]