University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compar

Total Page:16

File Type:pdf, Size:1020Kb

University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compar MINIS lilR A ftt University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compartment Model A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Hydrology and Hydrogeology Mines Library University of Nevada - Reno Reno, Nevada 89557-0044 by Stephen T. Kirk i' * July 1987 II WINtS UMARY " i i t S ' S The thesis of Stephen Thomas Kirk is approved: \AAjiC&OjJ C. Cr Thesis Advisor " University of Nevada Reno July 1987 ACNOWLED GEMENTS The author gratefully acknowledges the advice and guidance of Dr. Michael Cam- pana throughout this project. Additional advice was provided by Dr. W. Miller and Dr. D. Tibbitts. Special thanks go to Marcia Olson Kirk for her advice, en­ couragement, and patience. Financial support for this project was provided by the State of Nevada’s Carbonate Aquifers Studies Program and Desert Research Institute, Water Resources Center. IV ABSTRACT The White River Flow System (WRFS), a regional carbonate flow system in eastern Nevada, can be delineated with a discrete-state compartment model using environmental isotope (deuterium) data. Calibrated model results yield the following differences with an earlier conceptual model of WRFS: 1) minimum underflow out of the system along the Pahranagat Shear Zone is 4,000 acre feet per year; 2) minimum recharge from the Sheep Range to Coyote Springs Valley is 5,000 acre feet per year; and 3) minimum underflow from Meadow Valley Wash to Upper Moapa Valley is 4,500 acre feet per year. Calibration of the model using a paleoclimatically induced shift in re­ charge amounts (+35%) and deuterium concentrations (-8<5D) during the Pleistocene support these results. Component sensitivity analysis revealed that the magnitude of component sensitivity for a given input parameter is more dependent on the position of a cell than the relative amount of the input parameter. V Table of Contents ACKNOWLEDGEMENTS ............................................................................................. iii ABSTRACT ................................................................. iv LIST OF FIGURES ...................................................................................................... vii LIST OF TABLES ........................................................................................................... ix 1. INTRODUCTION .................................................................................................... ! Objectives and Scope ............................................................................ 1 Setting ................................................................................................................. 2 2. GEOLOGY .................................... 5 General Statement ............................................................................................... 5 Hydrostratigraphic Units ..................................................................................... 6 3. HYDROLOGY .......................................................................................................... 8 Surface Water ...................................................................................................... 8 Groundwater ........................................................................................................ 9 4. METHODS .................................................................................................... 15 Discrete-State Compartment Model .................................................................... 15 Deuterium as a Tracer ......................................................................................... 17 Sources of Deuterium Data ................................................................................. 20 Sensitivity Analysis .............................................................................................. 20 Parametric sensitivity .................................................. ............................. 22 Component sensitivity ............................................................................... 22 Range of component perturbations ........................................................... 26 DSC Model Applied to the White River Flow System ....................................... 27 Flow scenarios ............................................................................................. 27 Cell volumes ................................... ,.......................................................... 30 System boundary recharge volumes........................................................... 33 System boundary recharge concentrations ................................................. 34 Flow distributions ...................................................................................... 37 System boundary discharge volumes .......................................................... 40 5. RESULTS ....................................... 45 Steady Input Assumption .................................................................................... 45 Discussion of steady input results .............................................................. 49 Mean ages for steady input ........................................................................ 50 Transient Input Assumption: Maximum Cell Volumes ...................................... 60 Discussion of transient input assumption: maximum cell volumes ........... 62 Mean ages for transient input: maximum cell volumes ............................. 63 Transient Input Assumption: Minimum Cell Volumes ...................................... 64 vi Discussion of transient input: minimum cell volumes .............................. 66 Mean ages: transient input and minimum cell volumes ............................ 66 Component Sensitivity Results ........................................................................... 68 6. SUMMARY and CONCLUSIONS ........................................................................... 70 7. RECOMMENDATIONS FOR FUTURE RESEARCH ........................................... 75 REFERENCES ............................................................................................................. 76 APPENDICES ............................................................................................................... 79 Appendix 1. Water Budget (from Eakin, 1966)1966) .................................................................................................. 79 AppendixAppendix 2. Springs and Wells Used for Calibration ................................. ....... 80 AppendixAppendix 3. Springs, Streams, and Wells Used for SBRC Input ....................... 81 vii LIST OF FIGURES 1. Location of the White River Flow System. 3 2. Principal Mountain Ranges in the White River Flow System. 4 3. Hydrostratigraphic Units in the White River Flow System. 7 4. Flow Paths According to Eakin (1966). 10 5. Selected Springs and Wells in the White River Flow System. 12 6. Deuterium vs. Chloride Plot for SK1-SK18. 21 7. Cell Configuration for Scenario One. 28 8. Cell Configuration for Scenario Two. 29 9. Cell Configuration for Scenario Three. 31 10. Selected Springs and Wells for SBRC. 36 11. Flow Distributions for Scenario One. 41 12. Flow Distributions for Scenario Two. 42 13. Flow Distributions for Scenario Three. 43 14. Selected Springs and Wells in the White River Flow System Used for 46 Calibration. 15. Mean Ages for Scenario 1 with Maximum Cell Volumes. 54 16. Mean Ages for Scenario 2 with Maximum Cell Volumes. 55 17. Mean Ages for Scenario 3 with Maximum Cell Volumes. 56 18. Mean Ages for Scenario 1 with Minimum Cell Volumes. 57 19. Mean Ages for Scenario 2 with Minimum Cell Volumes. 58 20. Mean Ages for Scenario 3 with Minimum Cell Volumes. 59 1. Maximum Cell Volumes For Scenarios 1, 2, and 3. 32 2. Minimum Cell Volumes For Scenarios 1, 2, and 3. 32 3. Estimated Recharge. 33 4. SBRV Scenarios 1, 2 and 3. 34 5. SBRC Inputs. 35 6. Flow Distributions - Scenario 1. 38 7. Flow Distributions - Scenario 2. 39 8. Flow Distributions - Scenario 3. 40 9. Calibrated SBDVs. 44 10. Calibration Results For Steady Input and Maximum Cell Volumes. 47 11. Calibration Results For Steady Input and Minimum Cell Volumes. 48 12. Mean Ages for Steady Input and Max. Cell Vol. (years). 52 13. UG Ages In the WRFS 52 14. Mean Ages for Min. Cell Vol. and Steady Input (years). 53 15. Calibration Results for Transient Input and Maximum Cell Volumes. 61 16. Mean Ages For Transient Input and Maximum Cell Volumes. 64 17. Calibration Results For Transient Input and Minimum Cell Volumes. 65 18. Mean Ages For Minimum Cell Volumes and Transient Input (years). 67 19. Selected Component Sensitivities of SBRC - Scenario 1. 68 ix 20. Component Sensitivity Coefficients for Scenario 1-Max. Cell Vol. and 69 Steady Input. 21. Range of Parameters For Carbonate Cells. 74 22. Range of Parameters For Alluvial Cells. 74 1. INTRODUCTION Long-term water supply needs in southern and eastern Nevada have spurred continued interest in regional aquifers within the Paleozoic miogeosynclinal belt of eastern Nevada. A regional flow system is defined as a groundwater flow system encompassing one or more topographic basins and having flow paths which are large in comparison with "local" groundwater flow paths (Mifflin, 1968). This study is a continuation of more than twenty years of research, initiated by Dr. George B. Maxey, conducted by the Desert Research Institute concerning regional groundwater flow
Recommended publications
  • U.S. Department of the Interior Bureau of Land Management
    U.S. Department of the Interior Bureau of Land Management Environmental Assessment DOI-BLM-NV-L000-2017-0006-EA December 20, 2017 SEAMAN and WHITE RIVER HERD AREA WILD HORSE GATHER Location: Lincoln and Nye Counties Applicant/Address: U.S. Department of the Interior Bureau of Land Management Ely District Office Phone: (775) 289-1800 Fax: (775) 289-1910 Golden Gate, Seaman and White River Herd Area Wild Horse Gather Environmental Assessment DOI-BLM-NV-L010-2009-0023-EA 1.0 INTRODUCTION....................................................................................................... 3 1.1 Background: .......................................................................................................... 3 1.2 Purpose and Need ....................................................................................................... 8 1.3 Conformance with BLM Land Use Plan(s): ............................................................. 8 1.4 Relationship to Statutes, Regulations, or other Plans: ............................................ 8 2.0 DESCRIPTION OF ALTERNATIVES, INCLUDING PROPOSED ACTION 10 2.1 Introduction: ............................................................................................................. 10 2.2 Alternative A - Proposed Action: ............................................................................ 10 2.3 Alternative B - No Action: ........................................................................................ 14 2.4 Alternatives Considered, but Eliminated from Further Analysis .......................
    [Show full text]
  • "Ground Water in White River Valley, White Pine, Nye, and Lincoln
    STATE OF NEVADA OFFICE OF THE STATE ENGINEER WATER RESOURCES BULLETIN No. 8 GROUND WATER IN WHITE RIVER VALLEY, WHITE PINE, NYE, AND LINCOLN COUNTIES, NEVADA By G. B. MAXEY and T. E. EAKIN Prepared in cooperation with the UNITED STATES DEPARTMENT OF THE INTERIOR Geological Survey 1 949 CARSON CITY. NEVADA STATE PRINTING OFFICE JACK MCCARTHY. SUPERINTENDENT 1930 CONTENTS PAGE Foreword ............................................... 5 Abstract ............................................... 7 Introduction .............................................. 9 Location and general features .............................. 12 Drainage ................................................ 14 Climate ................................................ 18 Precipitation ................................................ 18 Temperature ................................................ 19 Vegetation ............................................... 25 Geology and water-bearing characteristics of the rocks . 26 General relations . .............. 26 Older sedimentary and igneous rocks . ............................................. 26 MCCARTHY. SUPERINTENDENT Tertiary and Quaternary alluvial and lacustrine deposits ..... 29 Ground water ................................................ 33 Occurrence ............................................... 33 Springs ............................................... 35 Source and amount of recharge . ............. 40 Movement ............................................... 41 Discharge ...............................................
    [Show full text]
  • Dry Lake Valley North SEZ Analysis
    1 11.4 DRY LAKE VALLEY NORTH 2 3 4 11.4.1 Background and Summary of Impacts 5 6 7 11.4.1.1 General Information 8 9 The proposed Dry Lake Valley North SEZ is located in Lincoln County in southeastern 10 Nevada (Figure 11.4.1.1-1). The SEZ has a total area of 76,874 acres (311 km2). In 2008, the 11 county population was 4,643, while adjacent Clark County to the south had a population 12 of 1,879,093. The closest population centers to the SEZ are Pioche, located about 15 mi (24 km) 13 to the east, and Caliente, located about 15 mi (24 km) to the southeast; both communities have 14 populations of about 1,000. The smaller communities of Caselton and Prince are located about 15 13 mi (21 km) to the east of the SEZ. Las Vegas is located about 110 mi (180 km) to the south. 16 17 The nearest major road to the Dry Lake Valley North SEZ is State Route 318, which is 18 about 7 mi (11 km) to the west of the SEZ, while U.S. 93 is about 8 mi (13 km) to the south. 19 Access to the interior of the SEZ is by dirt roads. The nearest railroad access is approximately 20 25 mi (40 km) away, while nearby airports include Lincoln County Airport in Panaca and Alamo 21 Landing Field in Alamo, which are located about 13 mi (21 km) south–southeast of and 35 mi 22 (56 km) southwest of the SEZ, respectively.
    [Show full text]
  • Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada
    Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada U.S. GEOLOGICAL SURVEY BULLETIN 1988-B I 1 r^Hr-~"r-^S »:-«>'°-;>-.'; '£ '. -"* °-"^^io-'oO;ol!i-..e>L ^? :^~ty-":- o\: s--b>^.'d- .? " ? o..bTvo-r» ?:.-!:.»:-. "o'.-o'-o .- *^-o?.°:.--o : : ° o£\*>: ^-°:* '.« - "o-o- .-o - ^-.o.*'. ^» ' - 1 .". '. O- ' "" "- "* -" no: ^--'*^-o.yvo:»-c)^ - *>- : p.-by :o.;--p-/.-'o."-',c>-( 0 = ?.o'VO -V "±« -* «?'.<?o-oi ^ .. «- .*».-:»: -* ^^»-^ Chapter B Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada By DONLON O. HURTUBISE and EDWARD A. DU BRAY A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1988 EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN HARRY E. COOK AND CHRISTOPHER J. POTTER, Project Coordinators U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Hurtubise, D.O. Stratigraphy and structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada / by Donlon O. Hurtubise and Edward A. du Bray, p. cm. (Evolution of sedimentary basins Eastern Great Basin ; ch. B) (U.S. Geological Survey bulletin ; 1988-B) Includes bibliographical references.
    [Show full text]
  • Annotated List of the Fishes of Nevada
    14 June 1984 PROC. BIOL. SOC. WASH. 97(1), 1984, pp. 103-118 ANNOTATED LIST OF THE FISHES OF NEVADA James E. Deacon and Jack E. Williams Abstract.-160 native and introduced fishes referable to 108 species, 56 genera, and 19 families are recorded for Nevada. The increasing proportion of introduced fishes continues to burden the native ichthyofauna. The first list of all fishes known from Nevada by La Rivers and Trelease (1952) eventually culminated in La Rivers' Fishes and Fisheries of Nevada, published in 1962. Over the past twenty years, a number of changes have occurred in the fish fauna of the state. These include additions through "official" actions as well as by "unofficial" means. Some taxa have become extinct and many have become much less abundant (Deacon 1979, Deacon et al. 1979). Numerous changes have also occurred in our understanding of probable taxonomic relationships of the fishes. The increased number of subspecies recognized since the 1962 list reflects a better understanding of distribution and geographic variation of the ichthyo- fauna. Our purpose is to produce a checklist that includes all taxa known from the state within historical times. The list includes all fishes native to Nevada and those that have been introduced into the state, whether or not they have become established. Our checklist reflects current understanding of the fauna and high- lights those areas where additional work is needed. Including subspecies, we record 160 fishes in the present fauna of Nevada referable to 108 species, 56 genera, and 19 families. We recognize 67 subspecies referable to 15 species.
    [Show full text]
  • Structure and Devonian Stratigraphy of the Timpahute Range, Nevada
    STRUCTURE AND DEVONIAN STRATIGRAPHY OF THE TIMPAHUTE RANGE, NEVADA Volume I by Alan K. Chamberlain © Copyright, 1999 A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date____________ Signed:__________________________ Alan K. Chamberlain Approved:__________________________ Dr. John E. Warme Professor and Thesis Advisor Golden, Colorado Date____________ ____________________________________ Dr. Roger Slatt, Professor and Head, Department of Geology and Geological Engineering ii ABSTRACT Sequences of Devonian rocks are advantageously exposed along a unique 40- mile-long east-west traverse in the greater Timpahute Range, southeastern Nevada. Study of these rocks casts light upon Devonian paleogeography, the Devonian Antler orogeny, an Upper Devonian cosmolite impact basin, this part of the Cretaceous Sevier fold-and- thrust belt, and the effects of Cenozoic extension. The greater Timpahute Range lies within the Timpahute Range 30' X 60' quadrangle and includes the region from Tempiute Mountain on the west to the Pahroc Range on the east. Concealed major north-south trending normal faults caused by Cenozoic extension have been proposed to disrupt the Paleozoic rocks of the region. However, a structural interpretation using a new geologic map of the quadrangle requires no major north-south striking normal faults. Furthermore, the greater Timpahute Range is interpreted as a salient of stacked thrust sheets within the Sevier fold-and-thrust belt. The range is bounded on the north and south by thrust tear faults that may be related to basement fractures caused by the cosmolite impact. Evidence for the Late Devonian cosmolite impact includes shocked quartz, iridium anomalies, ejecta spherules, and disturbed shallowing-upward sequences exhibiting intrasequence folding, brecciation, carbonate liquefaction, and graded bedding.
    [Show full text]
  • Technical Review Draft Pahranagat Roundtail Chub
    TECHNICAL REVIEW DRAFT PAHRANAGAT ROUNDTAIL CHUB RECOVERY PLAN U.S. Fish and Wildlife Service 500 NE Multnomah Street Portland, Oregon 97232 September, 1982 DISCLAIMER FOR TECHNICAL REVIEW DRAFT This is a technical review draft of the Pahranagat Roundtail chub recovery plan. It is not an official government document. It has not been approved by the U.S. Fish and Wildlife Service or any other agency. It does not necessarily represent official positions of the U.S. Fish and Wildlife Service or any other agencies (and it does not necessarily represent the views of all indi- viduals involved in the plan formulation). It has been prepared by the U.S. Fish and Wildlife Service to delineate reasonable actions believed required to place the Pahranagat roundtail chub species in the best possible position. This proposal is subject to modification following review and receipt of comments by cooperating agencies and other informed and interested parties. Goals a-nd objectives will be attained and funds expended contingent upon appro- priations priorities and other budgetary constraints. TABLE OF CONTENTS Page I. introduction A. Historic Range B. Present Range C. Reasons for Decline D. Life History E. Habitat Requirements F. Conservation Efforts II. Recovery A. Objective B. Step-down Outline C. Narrative D. References III. Implementation Schedule IV. Appendix Part 1 Introduction The Pahranagat roundtail chub, Gila robusta jordani, was listed as endangered by the U.S. Fish and Wildlife Service on October 13, 1970 (CFR 35:16047). The Nevada Board of Wildlife Commissioners also lists this species as endangered (NRS 503:065). This member of the minnow family is endemic to waters of the Pahranagat Valley, Lincoln County, Nevada; its closest relatives are associated with the Colorado River drainage (Miller 1946, Hubbs and Miller 1948, La Rivers 1962).
    [Show full text]
  • Monsoon Passage Fact Sheet
    Monsoon Passage Fact Sheet Safe haven stepping stones from the Mojave Desert to the Northern Great Basin East Pass a few years after a fire in the Clover Mountains of the southern Great Basin looking down into the Mojave’s Tule Desert © Louis Provencher/TNC Monsoon Passage The connected mountain ranges and wet valley bottoms of this natural highway provide desert tortoises, bighorn sheep, Cooper’s hawk, mule deer and other species escape routes from growing climate impacts, allowing them to find new homes where they can thrive. The region's name comes from being at the western edge of the summer monsoons that provide needed eastern-facing moisture to buffer rising temperatures and a pathway for species moving north. Imagine populations of raptors, small carnivores, small mammals, mule deer, bighorn sheep, passerine birds, insects, and plant species pushed northward or up and around mountains by warming temperatures and changes in precipitation patterns. Non-migratory species flow from the hot Mojave Desert ecoregion to the cooler Columbia Plateau ecoregion passing through the entirety of the Great Basin ecoregion is not easily guaranteed. There are less than five corridors of passably connected mountains ranges and wet valley bottoms that fully allow species movement within a viable thermal environment that may be viewed as steppingstones of safe havens. The Nevada Chapter is proposing one such thermal corridor in eastern Nevada titled Monsoon Passage. The corridor follows the Nevada-Utah border and is mostly in Nevada. For those familiar
    [Show full text]
  • A Preliminary Survey of the Aquatic and Semiaquatic Hemiptera
    Polhemus and Polhemus: Aquatic Hemiptera of Desert Hot Springs 1 A preliminary survey of the aquatic and semiaquatic Hemiptera occurring in the springs of the Railroad Valley, White River, and Amargosa River drainage systems, Nevada and California, with special reference to thermal relicts Dan A. Polhemus Dept. of Entomology, Bishop Museum, P. 0. Box 19000-A, Honolulu, HI 96817 ard John T. Polhemus Univ. of Colorado Museum, 3115 S. York St., Englewood, CO 80110 INTRODUCTION One of the most remarkable concentrations of disjunct and endemic aquatic Hemiptera in North America is found in the thermal refugia of the Railroad Valley, White River, and Amargosa River drainages of Nevada and California. These drainages represent former tributaries to the Colorado system that were continuous systems in the Pliocene and Pleistocene, but have been subsequently dessicated and reduced to discontinous spring fed aquatic refugia. The thermal springs of these three systems contain a large number of endemic aquatic Hemiptera species, as well as many highly disjunct populations of other taxa. The current report details the distributions of these species, addresses certain taxonomic problems relating to them, and considers the biogeographic significance of this thermally relictual fauna. LOCALITIES SAMPLED The information upon which this report is based has been collected by the authors over a period of thirty years, and in many cases the passage of several decades has seen a serious degredation of the aquatic habita~s listed below. For this reason an attempt has been made in the last three years to revisit many of the most critical habitats and &scertain the status of their aquatic Hemiptera faunas.
    [Show full text]
  • Relations Between Hinterland and Foreland Shortening Sevier Orogeny
    TECTONICS, VOL. 19, NO. 6, PAGES 1124-1143 DECEMBER 2000 Relations between hinterland and foreland shortening: Sevier orogeny,central North American Cordillera WandaJ. Taylor •, JohnM. BartIcy2,Mark W. Martin3, John W. Geissmann, J.Douglas Walker •, Phillip A. Armstrong6,and Joan E. Fryxell7 Abstract. The tectonic relations between foreland and hinterland betweencentral Nevada and Utah thrusts,or that the Utah thrusts deformationin noncollisionalorogens are criticalto understanding persistinto southeastern Nevada but are located east of thelongitude theoverall development of orogens.The classiccentral Cordilleran of the central Nevada thrust belt. As a result of overall cratonward forelandfold-and-thrust belt in the United States(Late Jurassicto migrationof thrusting,the centralNevada thrust belt probably earlyTertiary Sevier belt) andthe moreinternal zones to the west formed the Cordilleran foreland fold-thrust belt early in the (centralNevada thrust belt) providedata critical to understanding shorteningevent but later lay in thehinterland of theSevier fold- the developmereof internaland externalparts of orogens. The thrustbelt of Idaho-Wyoming-Utah. GardenValley thrustsystem, part of the centralNevada thnkst belt, crops out in south-centralNevada within a region generally considered to be the hinterland of the Jurassic to Eocene Sevier 1. Introduction thrustbelt. The thrustsystem consists of at leastfour principal Manyinvestigations in the North American Cordillera and the thrustplates composed of strataas youngas Pennsylvanianin age
    [Show full text]
  • The Nevada Mining Association's Lincoln County Wilderness Study
    The Nevada Mining Association’s Lincoln County Wilderness Study Area Position Paper A Review of Wilderness Study Areas in Lincoln County Nevada. Part: 1 Lincoln County Land Use Patterns Part: 2 Individual WSA’s EXHIBIT E1 Wilderness Document consists of 72 pages. ; Entire document provided. 1 Due to size limitations, only three panels are provided. A copy of the complete document is available through the Research Library (775/684-6827) or e-mail [email protected]). Meeting Date: 01-23-04 Lincoln County L L NMA L L NMA CLOVER MOUNTAINS WILDERNESS STUDY AREA 1. THE STUDY AREA - 84,935 acres The Clover Mountains WSA (NV-050-139) is located in southern Lincoln County, Nevada, approximately twelve miles south of Caliente, Nevada, in the western Clover Mountains. The WSA contains 84,935 acres of BLM land with no split estate lands or private inholdings. Along the southwest side, from the intersection of Pennsylvania Canyon and Meadow Valley Wash southerly, the boundary is formed by the Union Pacific Railroad tracks or the adjoining access road, whichever is more easterly, except for a tract of private land. At the private land, the boundary is formed by a combination of the private land and the access road. The southern boundary is formed by extending a line easterly from the midline of Section 3, T.8S., R.67E., approximately along a ridgeline, to the approximate center of Section 4, T.8S., R.68E., at map elevation 4,671'. From there the line extends southeasterly, point to point, to the northern slopes of Garden Mountain, thence northerly and easterly across the lower slopes of the Clover Mountains, point to point, to a point about one mile north of Sam's Camp Well.
    [Show full text]
  • Myers Cave Et Al Evidence Report 110807
    Hydrogeology of Cave, Dry Lake and Delamar Valleys and Effects of Groundwater Development Proposed by the Southern Nevada Water Authority White Pine and Lincoln County, Nevada November 7, 2007 Prepared by Prepared by: Tom Myers, Ph.D. Hydrologic Consultant Reno, NV 11/07/2007 Table of Contents Executive Summary ......................................................................................................1 Introduction ...................................................................................................................4 SNWA Water Rights Applications ................................................................................6 Methods .......................................................................................................................6 Perennial Yield ..............................................................................................................7 Hydrology of the Study Area ......................................................................................11 Geologic Setting ........................................................................................................11 Hydrogeology ............................................................................................................16 Conceptual Flow Model ............................................................................................17 Water Balance ...........................................................................................................18 Recharge Estimates ...................................................................................................18
    [Show full text]