University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compar
Total Page:16
File Type:pdf, Size:1020Kb
MINIS lilR A ftt University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compartment Model A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Hydrology and Hydrogeology Mines Library University of Nevada - Reno Reno, Nevada 89557-0044 by Stephen T. Kirk i' * July 1987 II WINtS UMARY " i i t S ' S The thesis of Stephen Thomas Kirk is approved: \AAjiC&OjJ C. Cr Thesis Advisor " University of Nevada Reno July 1987 ACNOWLED GEMENTS The author gratefully acknowledges the advice and guidance of Dr. Michael Cam- pana throughout this project. Additional advice was provided by Dr. W. Miller and Dr. D. Tibbitts. Special thanks go to Marcia Olson Kirk for her advice, en couragement, and patience. Financial support for this project was provided by the State of Nevada’s Carbonate Aquifers Studies Program and Desert Research Institute, Water Resources Center. IV ABSTRACT The White River Flow System (WRFS), a regional carbonate flow system in eastern Nevada, can be delineated with a discrete-state compartment model using environmental isotope (deuterium) data. Calibrated model results yield the following differences with an earlier conceptual model of WRFS: 1) minimum underflow out of the system along the Pahranagat Shear Zone is 4,000 acre feet per year; 2) minimum recharge from the Sheep Range to Coyote Springs Valley is 5,000 acre feet per year; and 3) minimum underflow from Meadow Valley Wash to Upper Moapa Valley is 4,500 acre feet per year. Calibration of the model using a paleoclimatically induced shift in re charge amounts (+35%) and deuterium concentrations (-8<5D) during the Pleistocene support these results. Component sensitivity analysis revealed that the magnitude of component sensitivity for a given input parameter is more dependent on the position of a cell than the relative amount of the input parameter. V Table of Contents ACKNOWLEDGEMENTS ............................................................................................. iii ABSTRACT ................................................................. iv LIST OF FIGURES ...................................................................................................... vii LIST OF TABLES ........................................................................................................... ix 1. INTRODUCTION .................................................................................................... ! Objectives and Scope ............................................................................ 1 Setting ................................................................................................................. 2 2. GEOLOGY .................................... 5 General Statement ............................................................................................... 5 Hydrostratigraphic Units ..................................................................................... 6 3. HYDROLOGY .......................................................................................................... 8 Surface Water ...................................................................................................... 8 Groundwater ........................................................................................................ 9 4. METHODS .................................................................................................... 15 Discrete-State Compartment Model .................................................................... 15 Deuterium as a Tracer ......................................................................................... 17 Sources of Deuterium Data ................................................................................. 20 Sensitivity Analysis .............................................................................................. 20 Parametric sensitivity .................................................. ............................. 22 Component sensitivity ............................................................................... 22 Range of component perturbations ........................................................... 26 DSC Model Applied to the White River Flow System ....................................... 27 Flow scenarios ............................................................................................. 27 Cell volumes ................................... ,.......................................................... 30 System boundary recharge volumes........................................................... 33 System boundary recharge concentrations ................................................. 34 Flow distributions ...................................................................................... 37 System boundary discharge volumes .......................................................... 40 5. RESULTS ....................................... 45 Steady Input Assumption .................................................................................... 45 Discussion of steady input results .............................................................. 49 Mean ages for steady input ........................................................................ 50 Transient Input Assumption: Maximum Cell Volumes ...................................... 60 Discussion of transient input assumption: maximum cell volumes ........... 62 Mean ages for transient input: maximum cell volumes ............................. 63 Transient Input Assumption: Minimum Cell Volumes ...................................... 64 vi Discussion of transient input: minimum cell volumes .............................. 66 Mean ages: transient input and minimum cell volumes ............................ 66 Component Sensitivity Results ........................................................................... 68 6. SUMMARY and CONCLUSIONS ........................................................................... 70 7. RECOMMENDATIONS FOR FUTURE RESEARCH ........................................... 75 REFERENCES ............................................................................................................. 76 APPENDICES ............................................................................................................... 79 Appendix 1. Water Budget (from Eakin, 1966)1966) .................................................................................................. 79 AppendixAppendix 2. Springs and Wells Used for Calibration ................................. ....... 80 AppendixAppendix 3. Springs, Streams, and Wells Used for SBRC Input ....................... 81 vii LIST OF FIGURES 1. Location of the White River Flow System. 3 2. Principal Mountain Ranges in the White River Flow System. 4 3. Hydrostratigraphic Units in the White River Flow System. 7 4. Flow Paths According to Eakin (1966). 10 5. Selected Springs and Wells in the White River Flow System. 12 6. Deuterium vs. Chloride Plot for SK1-SK18. 21 7. Cell Configuration for Scenario One. 28 8. Cell Configuration for Scenario Two. 29 9. Cell Configuration for Scenario Three. 31 10. Selected Springs and Wells for SBRC. 36 11. Flow Distributions for Scenario One. 41 12. Flow Distributions for Scenario Two. 42 13. Flow Distributions for Scenario Three. 43 14. Selected Springs and Wells in the White River Flow System Used for 46 Calibration. 15. Mean Ages for Scenario 1 with Maximum Cell Volumes. 54 16. Mean Ages for Scenario 2 with Maximum Cell Volumes. 55 17. Mean Ages for Scenario 3 with Maximum Cell Volumes. 56 18. Mean Ages for Scenario 1 with Minimum Cell Volumes. 57 19. Mean Ages for Scenario 2 with Minimum Cell Volumes. 58 20. Mean Ages for Scenario 3 with Minimum Cell Volumes. 59 1. Maximum Cell Volumes For Scenarios 1, 2, and 3. 32 2. Minimum Cell Volumes For Scenarios 1, 2, and 3. 32 3. Estimated Recharge. 33 4. SBRV Scenarios 1, 2 and 3. 34 5. SBRC Inputs. 35 6. Flow Distributions - Scenario 1. 38 7. Flow Distributions - Scenario 2. 39 8. Flow Distributions - Scenario 3. 40 9. Calibrated SBDVs. 44 10. Calibration Results For Steady Input and Maximum Cell Volumes. 47 11. Calibration Results For Steady Input and Minimum Cell Volumes. 48 12. Mean Ages for Steady Input and Max. Cell Vol. (years). 52 13. UG Ages In the WRFS 52 14. Mean Ages for Min. Cell Vol. and Steady Input (years). 53 15. Calibration Results for Transient Input and Maximum Cell Volumes. 61 16. Mean Ages For Transient Input and Maximum Cell Volumes. 64 17. Calibration Results For Transient Input and Minimum Cell Volumes. 65 18. Mean Ages For Minimum Cell Volumes and Transient Input (years). 67 19. Selected Component Sensitivities of SBRC - Scenario 1. 68 ix 20. Component Sensitivity Coefficients for Scenario 1-Max. Cell Vol. and 69 Steady Input. 21. Range of Parameters For Carbonate Cells. 74 22. Range of Parameters For Alluvial Cells. 74 1. INTRODUCTION Long-term water supply needs in southern and eastern Nevada have spurred continued interest in regional aquifers within the Paleozoic miogeosynclinal belt of eastern Nevada. A regional flow system is defined as a groundwater flow system encompassing one or more topographic basins and having flow paths which are large in comparison with "local" groundwater flow paths (Mifflin, 1968). This study is a continuation of more than twenty years of research, initiated by Dr. George B. Maxey, conducted by the Desert Research Institute concerning regional groundwater flow