Fish Restoration Program Agreement

Total Page:16

File Type:pdf, Size:1020Kb

Fish Restoration Program Agreement Fish Restoration Program Agreement Implementation Strategy Habitat Restoration and Other Actions for Listed Delta Fish Department of Water Resources and Department of Fish and Game in coordination with the US Fish and Wildlife Service and the National Marine Fisheries Service Cover: Prospect Island, Sacramento River Deep Water Ship Channel, and Liberty Island (Photo Credit: Dale Kolke) State of California The Resources Agency Department of Water Resources March 2012 Fish Restoration Program Agreement Implementation Strategy Habitat Restoration and Other Actions for Listed Delta Fish Prepared by: With assistance from: Heidi Rooks Department of Fish and Game Stephani Spaar Dave Zezulak Dennis McEwan Fred Jurick Jason Roberts Laura Flournoy Carl Wilcox Tim Smith Jim Starr Gina Benigno Gina Van Klompenburg Pamela Lindholm Tim Stevens Ling Chu Chandra Ferrari Laurence Kerckhoff Delta Stewardship Council Kristal Davis‐Fadtke PAGE INTENTIONALLY LEFT BLANK ii Table of Contents 1. Introduction ........................................................................................................................ 1 1.1 Purpose ................................................................................................................................. 1 1.2 FRPA Goals and Objectives ................................................................................................... 2 1.3 Program Description ............................................................................................................. 2 1.3.1 Program Structure and Support ..................................................................................... 3 1.3.2 Estimated Costs, Acreage Targets, and Timeline ........................................................... 5 1.4 FRPA’s Relationship to Other Programs ............................................................................... 7 2. Proposed Restoration Actions.............................................................................................. 9 2.1 Restoration Scientific Principles ........................................................................................... 9 2.2. Action Components ........................................................................................................... 10 2.2.1 Financing ...................................................................................................................... 10 2.2.2 Restoration Action Identification and Land Acquisition .............................................. 11 2.2.3 Legal and Land Management Issues ............................................................................ 12 2.2.4 Stakeholder Involvement and Public Outreach ........................................................... 13 2.2.5 Planning and Design ..................................................................................................... 13 2.2.6 Environmental Compliance and Permits ..................................................................... 13 2.2.7 Monitoring and Adaptive Management ...................................................................... 14 2.2.8 Construction ................................................................................................................. 14 2.2.9 Post‐Project Management ........................................................................................... 15 2.3. Near Term Actions ............................................................................................................. 15 2.4 Potential Future Actions ..................................................................................................... 17 2.5 Restoration Challenges ....................................................................................................... 22 3. Action Selection Framework ............................................................................................. 23 3.1 Action Identification Process .............................................................................................. 24 3.2 Action Selection Criteria ..................................................................................................... 24 3.3 Action Acreage Crediting Evaluation .................................................................................. 26 3.4 Review of Action Progress .................................................................................................. 26 4.0 Monitoring and Reporting ............................................................................................... 27 4.1 Required Monitoring Under the Biological Opinions and ITP ............................................ 27 4.2 Monitoring Plan Implementation ....................................................................................... 28 iii 4.3 Reporting Requirements ..................................................................................................... 29 4.4 Adaptive Management ....................................................................................................... 32 5.0 Post‐Project Maintenance ............................................................................................... 33 5.1 Property Transfer and Management Costs......................................................................... 34 5.2 Funding ............................................................................................................................... 34 6.0 References ....................................................................................................................... 34 Appendix A. Fish Restoration Program Agreement Appendix B. Required Actions of the Fish Restoration Program Agreement Appendix C. BDCP Habitat Credit Memorandum of Agreement Appendix D. WREM 65 and SWPAO Project Charter Appendix E. Permits Likely to be Required for Near Term Actions Appendix F. Descriptions of Near Term Actions Appendix G. Annual Report Template Appendix H. Conflict Resolution Form iv List of Figures and Tables Figure 1: Roles, responsibilities, and coordination of the FRPA program……………………………………4 Figure 2: Near‐term habitat restoration actions in the Cache Slough Complex…………………………16 Figure 3: Near‐term habitat restoration actions in Suisun Marsh……………………………………………..18 Figure 4: Near‐term habitat restoration actions in the Yolo Bypass………………………………………….19 Figure 5: Land elevations within the Northern Delta………………………………………………………………..21 Figure 6: Framework for analyzing and selecting proposed actions for implementation………….25 Table 1: Estimated costs and acreage targets for potential FRPA restoration actions………………..6 Table 2: Potential metrics to be evaluated……………….………………………………………………………………30 v PAGE INTENTIONALLY LEFT BLANK vi 1. Introduction 1.1 Purpose The Fish Restoration Program Agreement (FRPA) (Appendix A), between the Department of Fish and Game (DFG) and the Department of Water Resources (DWR), was signed on October 18, 2010. FRPA addresses specific habitat restoration requirements of the US Fish and Wildlife Service (USFWS) and National Marine Fisheries Service S)(NMF biological opinions (Biological Opinions) for State Water Project (SWP) and Central Valley Project (CVP) operations. FRPA is also intended to address the habitat requirements of the DFG Longfin Smelt Incidental Take Permit (ITP) for SWP Delta operations. The primary objective of the FRPA program is to implement the fish habitat restoration requirements and related actions of the Biological Opinions and the ITP in the Delta, Suisun Marsh, and Yolo Bypass and is focused on 8,000 acres of intertidal and associated subtidal habitat to benefit delta smelt, including 800 acres of mesohaline habitat to benefit longfin smelt, and a number of related actions for salmonids. DFG and DWR intend that habitat restoration actions implemented in compliance with the USFWS biological opinion that also meet the habitat restoration requirements of the ITP will operate to satisfy the acreage requirements of the ITP. The purpose of this Implementation Strategy is to describe the process by which DWR and DFG will implement the FRPA program, and to satisfy Section B of FRPA. Section B of FRPA requires DWR, with assistance from DFG, to develop an Implementation Schedule that will identify restoration actions, estimated costs, targeted acreage, and a timeline for DWR’s implementation of restoration actions to satisfy DWR’s obligations under the Biological Opinions and ITP. Appendix B lists the specific habitat restoration requirements of FRPA, the Biological Opinions, and the ITP that pertain to this program. This document lays out the strategy to address these requirements. In addition, DWR and DFG will complete the necessary environmental compliance documents to implement site specific habitat restoration projects; this may include tiering from existing programmatic documents where appropriate. Pursuant to FRPA, DFG will work cooperatively with and assist DWR in establishing the management and financial framework necessary to implement the FRPA program. DWR, with assistance from DFG, will begin a process to fund, plan, and implement actions, including aquatic habitat restoration to benefit delta smelt, longfin smelt, and winter‐run and spring‐run Chinook salmon (hereafter referred to as Covered Fish Species) to mitigate impacts to these species caused by the SWP Delta operations. Specifically, these actions include: • Delta Smelt Biological Opinion Reasonable and Prudent Alternative (RPA) Component 4; 1 • NMFS Biological Opinion RPA Actions 1.2.6 and 1.6.2 in
Recommended publications
  • 0 5 10 15 20 Miles Μ and Statewide Resources Office
    Woodland RD Name RD Number Atlas Tract 2126 5 !"#$ Bacon Island 2028 !"#$80 Bethel Island BIMID Bishop Tract 2042 16 ·|}þ Bixler Tract 2121 Lovdal Boggs Tract 0404 ·|}þ113 District Sacramento River at I Street Bridge Bouldin Island 0756 80 Gaging Station )*+,- Brack Tract 2033 Bradford Island 2059 ·|}þ160 Brannan-Andrus BALMD Lovdal 50 Byron Tract 0800 Sacramento Weir District ¤£ r Cache Haas Area 2098 Y o l o ive Canal Ranch 2086 R Mather Can-Can/Greenhead 2139 Sacramento ican mer Air Force Chadbourne 2034 A Base Coney Island 2117 Port of Dead Horse Island 2111 Sacramento ¤£50 Davis !"#$80 Denverton Slough 2134 West Sacramento Drexler Tract Drexler Dutch Slough 2137 West Egbert Tract 0536 Winters Sacramento Ehrheardt Club 0813 Putah Creek ·|}þ160 ·|}þ16 Empire Tract 2029 ·|}þ84 Fabian Tract 0773 Sacramento Fay Island 2113 ·|}þ128 South Fork Putah Creek Executive Airport Frost Lake 2129 haven s Lake Green d n Glanville 1002 a l r Florin e h Glide District 0765 t S a c r a m e n t o e N Glide EBMUD Grand Island 0003 District Pocket Freeport Grizzly West 2136 Lake Intake Hastings Tract 2060 l Holland Tract 2025 Berryessa e n Holt Station 2116 n Freeport 505 h Honker Bay 2130 %&'( a g strict Elk Grove u Lisbon Di Hotchkiss Tract 0799 h lo S C Jersey Island 0830 Babe l Dixon p s i Kasson District 2085 s h a King Island 2044 S p Libby Mcneil 0369 y r !"#$5 ·|}þ99 B e !"#$80 t Liberty Island 2093 o l a Lisbon District 0307 o Clarksburg Y W l a Little Egbert Tract 2084 S o l a n o n p a r C Little Holland Tract 2120 e in e a e M Little Mandeville
    [Show full text]
  • Transitions for the Delta Economy
    Transitions for the Delta Economy January 2012 Josué Medellín-Azuara, Ellen Hanak, Richard Howitt, and Jay Lund with research support from Molly Ferrell, Katherine Kramer, Michelle Lent, Davin Reed, and Elizabeth Stryjewski Supported with funding from the Watershed Sciences Center, University of California, Davis Summary The Sacramento-San Joaquin Delta consists of some 737,000 acres of low-lying lands and channels at the confluence of the Sacramento and San Joaquin Rivers (Figure S1). This region lies at the very heart of California’s water policy debates, transporting vast flows of water from northern and eastern California to farming and population centers in the western and southern parts of the state. This critical water supply system is threatened by the likelihood that a large earthquake or other natural disaster could inflict catastrophic damage on its fragile levees, sending salt water toward the pumps at its southern edge. In another area of concern, water exports are currently under restriction while regulators and the courts seek to improve conditions for imperiled native fish. Leading policy proposals to address these issues include improvements in land and water management to benefit native species, and the development of a “dual conveyance” system for water exports, in which a new seismically resistant canal or tunnel would convey a portion of water supplies under or around the Delta instead of through the Delta’s channels. This focus on the Delta has caused considerable concern within the Delta itself, where residents and local governments have worried that changes in water supply and environmental management could harm the region’s economy and residents.
    [Show full text]
  • Fall 2015 CCSDA Newsletter
    Contra Costa Special Districts Association Newsletter Contra Costa Chapter of the California Special Districts Association Fall 2015 October 2015 Ironhouse Sanitary District General Ironhouse new General Manager Manager Tom Williams Retires Chad Davisson, the new General Manager for Ironhouse You don’t have to look too hard to see the changes, Sanitary District (ISD), started on July 13, 2015. Chad innovations and conservation techniques that Tom comes to the District with over 25 years of wastewater Williams has helped bring to Ironhouse Sanitary District industry experience. (ISD) during his 15 years there, including the past 10 as He also has 10 years of general manager. It is those lasting contributions that executive level organization Williams leaves behind. management experience. He has a Bachelor of Arts Congratulations Degree in Public Administration Tom Williams for 15 from San Diego State University and is scheduled to receive his years’ service, ten MBA Degree from Saint Mary’s College in Moraga January years as Manager! 2016. He served as the General Manager of the Richmond First hired as the district’s engineer under the Municipal Sewer District, worked for the City of San leadership of then GM David Bauer, Williams dove in Mateo as the Environmental Services Division Manager, on existing projects around the old treatment plant. the Water Reclamation Systems Plant Manager for When Bauer retired, Williams easily made the transition Olivenhain Water District and the Industrial Waste to overseeing the day-to-day operations of the district. Control Representative for the County of San Diego. One of his first major projects was building a railroad He has also worked as a consultant for Crescent City, undercrossing to safely bring workers and the public the City of Ontario, the City of Montclair and the past what had been a non-signalized grade crossing Olivenhain Municipal Water District.
    [Show full text]
  • Sacramento River Flood Control System
    A p pp pr ro x im a te ly 5 0 M il Sacramento River le es Shasta Dam and Lake ek s rre N Operating Agency: USBR C o rt rr reek th Dam Elevation: 1,077.5 ft llde Cre 70 I E eer GrossMoulton Pool Area: 29,500 Weir ac AB D Gross Pool Capacity: 4,552,000 ac-ft Flood Control System Medford !( OREGON IDAHOIDAHO l l a a n n a a C C !( Redding kk ee PLUMAS CO a e a s rr s u C u s l l Reno s o !( ome o 99 h C AB Th C NEVADA - - ^_ a a Sacramento m TEHAMA CO aa hh ee !( TT San Francisco !( Fresno Las Vegas !( kk ee e e !( rr Bakersfield 5 CC %&'( PACIFIC oo 5 ! Los Angeles cc !( S ii OCEAN a hh c CC r a S to m San Diego on gg !( ny ii en C BB re kk ee ee k t ee Black Butte o rr C Reservoir R i dd 70 v uu Paradise AB Oroville Dam - Lake Oroville Hamilton e M Operating Agency: CA Dept of Water Resources r Dam Elevation: 922 ft City Chico Gross Pool Area: 15,800 ac Gross Pool Capacity: 3,538,000 ac-ft M & T Overflow Area Black Butte Dam and Lake Operating Agency: USACE Dam Elevation: 515 ft Tisdale Weir Gross Pool Area: 4,378 ac 3 B's GrossMoulton Pool Capacity: 136,193Weir ac-ft Overflow Area BUTTE CO New Bullards Bar Dam and Lake Operating Agency: Yuba County Water Agency Dam Elevation: 1965 ft Gross Pool Area: 4,790 ac Goose Lake Gross Pool Capacity: 966,000 ac-ft Overflow Area Lake AB149 kk ee rree Oroville Tisdale Weir C GLENN CO ee tttt uu BB 5 ! Oroville New Bullards Bar Reservoir AB49 ll Moulton Weir aa nn Constructed: 1932 Butte aa CC Length: 500 feet Thermalito Design capacity of weir: 40,000 cfs Design capacity of river d/s of weir: 110,000 cfs Afterbay Moulton Weir e ke rro he 5 C ! Basin e kk Cre 5 ! tt 5 ! u Butte Basin and Butte Sink oncu H Flow from the 3 overflow areas upstream Colusa Weir of the project levees, from Moulton Weir, Constructed: 1933 and from Colusa Weir flows into the Length: 1,650 feet Butte Basin and Sink.
    [Show full text]
  • Transitions for the Delta Economy
    Transitions for the Delta Economy January 2012 Josué Medellín-Azuara, Ellen Hanak, Richard Howitt, and Jay Lund with research support from Molly Ferrell, Katherine Kramer, Michelle Lent, Davin Reed, and Elizabeth Stryjewski Supported with funding from the Watershed Sciences Center, University of California, Davis Summary The Sacramento-San Joaquin Delta consists of some 737,000 acres of low-lying lands and channels at the confluence of the Sacramento and San Joaquin Rivers (Figure S1). This region lies at the very heart of California’s water policy debates, transporting vast flows of water from northern and eastern California to farming and population centers in the western and southern parts of the state. This critical water supply system is threatened by the likelihood that a large earthquake or other natural disaster could inflict catastrophic damage on its fragile levees, sending salt water toward the pumps at its southern edge. In another area of concern, water exports are currently under restriction while regulators and the courts seek to improve conditions for imperiled native fish. Leading policy proposals to address these issues include improvements in land and water management to benefit native species, and the development of a “dual conveyance” system for water exports, in which a new seismically resistant canal or tunnel would convey a portion of water supplies under or around the Delta instead of through the Delta’s channels. This focus on the Delta has caused considerable concern within the Delta itself, where residents and local governments have worried that changes in water supply and environmental management could harm the region’s economy and residents.
    [Show full text]
  • Comparing Futures for the Sacramento-San Joaquin Delta
    comparing futures for the sacramento–san joaquin delta jay lund | ellen hanak | william fleenor william bennett | richard howitt jeffrey mount | peter moyle 2008 Public Policy Institute of California Supported with funding from Stephen D. Bechtel Jr. and the David and Lucile Packard Foundation ISBN: 978-1-58213-130-6 Copyright © 2008 by Public Policy Institute of California All rights reserved San Francisco, CA Short sections of text, not to exceed three paragraphs, may be quoted without written permission provided that full attribution is given to the source and the above copyright notice is included. PPIC does not take or support positions on any ballot measure or on any local, state, or federal legislation, nor does it endorse, support, or oppose any political parties or candidates for public office. Research publications reflect the views of the authors and do not necessarily reflect the views of the staff, officers, or Board of Directors of the Public Policy Institute of California. Summary “Once a landscape has been established, its origins are repressed from memory. It takes on the appearance of an ‘object’ which has been there, outside us, from the start.” Karatani Kojin (1993), Origins of Japanese Literature The Sacramento–San Joaquin Delta is the hub of California’s water supply system and the home of numerous native fish species, five of which already are listed as threatened or endangered. The recent rapid decline of populations of many of these fish species has been followed by court rulings restricting water exports from the Delta, focusing public and political attention on one of California’s most important and iconic water controversies.
    [Show full text]
  • Summary of Floods Ir the United States During 1960
    Summary of Floods ir the United States During 1960 By J. O. ROSTVEDT FLOODS OF 1960 IN THE UNITED STATES GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1790-B Prepared in cooperation with Federal, State, and local agencies CNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE DTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.G. 20402 - Price 45 cents (pap^r cover) CONTENTS Page Abstract___-_--_____-__-____---_--__-______-___-___.____________ Bl Introduction._____________________________________________________ 1 Determination of flood stages and discharges_________________________ 6 Explanation of data_________________-__-___________________-_____- 11 Summary of floods of 1960_____________________________________ 13 Floods of: February 8-10 in northern California._______________________ 13 March 7-9 in southern Idaho.______,____-__-__-_-_____-____ 18 March 17-April 5 in central Florida.________________________ 20 March-April in the Skunk River and lower Iowa River basins, Iowa_ _________________________________________________ 24 March 29-April 6 in southeastern Wisconsin and northeastern Illinois.----.-.-_____________________________-. 27 March-April in eastern Nebraska and adjacent areas._________ 30 March 30-April 6 in New York___-_-_____---_-__-_-_--__-__ 47 April 15^19 in west-central Missouri.________________________ 51 April and May in northern Wisconsin and Michigan Upper Peninsula. ___ ___________-_-______-__-_-_--___-_-_-_-_-__ 53 May 4-6 in northwestern Arkansas and east-central Oklahoma. _ 58 May 5-9 in southern Mississippi.___________________________ 60 May 6 in south-central Missouri.- __________________________ 64 May 19-22 in southwestern Arkansas and southeastern Okla­ homa.
    [Show full text]
  • Farm to Fish: Lessons from a Multi-Year Study on Agricultural Floodplain Habitat Ted Sommer,*1 Brian Schreier,1 J
    Sponsored by the Delta Science Program and the UC Davis Muir Institute RESEARCH Farm to Fish: Lessons from a Multi-Year Study on Agricultural Floodplain Habitat Ted Sommer,*1 Brian Schreier,1 J. Louise Conrad,2 Lynn Takata,2 Bjarni Serup,3 Rob Titus,3 Carson Jeffres,4 Eric Holmes,4 Jacob Katz5 ABSTRACT that seasonally flooded fields are highly Large areas of California’s historic floodplain productive, resulting in significantly higher have been separated from adjacent river levels of zooplankton and high Chinook channels by levee construction, allowing the Salmon growth rates as compared to the development of an extensive agricultural adjacent Sacramento River. We found similar industry. Based on successful partnerships results for multiple geographical areas in between agriculture and conservation groups the Central Valley, and in different cover to support migrating waterfowl, we examined types, such as non-rice crops and fallow whether seasonally flooded rice fields areas. Although field substrate type did not could be modified to provide off-channel detectably affect fish growth and survival, rearing habitat for juvenile Chinook Salmon connectivity with upstream and downstream Oncorhynchus tshawytscha. During winter and areas appeared to drive fish occupancy, spring of 2012-2017, we conducted a series because rearing young salmon were generally of experiments in Yolo Bypass and other attracted to inflow in the fields, and not regions of California’s Central Valley using all of the fish successfully emigrated off hatchery Chinook Salmon as a surrogate the fields without efficient drainage. In for wild Chinook Salmon, the management general, we faced numerous logistic and target for our project.
    [Show full text]
  • REPORT 1St Session HOUSE of REPRESENTATIVES 104–149 " !
    104TH CONGRESS REPORT 1st Session HOUSE OF REPRESENTATIVES 104±149 " ! ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, 1996 JUNE 20, 1995.ÐCommitted to the Committee of the Whole House on the State of the Union and ordered to be printed Mr. MYERS of Indiana, from the Committee on Appropriations, submitted the following R E P O R T together with ADDITIONAL VIEWS [To accompany H.R. 1905] The Committee on Appropriations submits the following report in explanation of the accompanying bill making appropriations for en- ergy and water development for the fiscal year ending September 30, 1996, and for other purposes. INDEX TO BILL AND REPORT Page Number Bill Report I. Department of DefenseÐCivil: Corps of engineersÐCivil: General investigations ................................................................. 2 6 Construction, general .................................................................. 3 26 Flood control, Mississippi River and tributaries, Arkansas, Il- linois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee .................................................................................. 5 36 Operation and maintenance, general ......................................... 5 38 Regulatory program ..................................................................... 6 52 Flood control and coastal emergencies ....................................... 6 52 Oil spill research .......................................................................... 7 52 General expenses ........................................................................
    [Show full text]
  • A Century of Delta Salt Water Barriers
    A Century of Salt Water Barriers in the Delta By Tim Stroshane Policy Analyst Restore the Delta June 5, 2015 edition Since the late 19th century, California’s basic plan for water resource development has been to export water from the Sacramento River and the Delta to the San Joaquin Valley and southern California. Unfortunately, this basic plan ignores the reality that the Delta is the very definition of an estuary: it is where fresh water from the Central Valley’s rivers meets salt water from tidal flow to the Delta from San Francisco Bay. Productive ecosystems have thrived in the Delta for millenia prior to California statehood. But for nearly a century now, engineers and others have frequently referred to the Delta as posing a “salt menace,” a “salinity problem” with just two solutions: either maintain a predetermined stream flow from the Delta to Suisun Bay to hydraulically wall out the tide, or use physical barriers to separate saline from fresh water into the Delta. While readily admitting that the “salt menace” results from reduced inflows from the Delta’s major tributary rivers, the state of California uses salt water barriers as a technological fix to address the symptoms of the salinity problem, rather than the root causes. Given complex Delta geography, these two main solutions led to many proposals to dam up parts of San Francisco Bay, Carquinez Strait, or the waterway between Chipps Island in eastern Suisun Bay and the City of Antioch, or to use large amounts of water—referred to as “carriage water”— to hold the tide literally at bay.
    [Show full text]
  • The Experimental Agricultural Floodplain Habitat Investigation at Knaggs Ranch on Yolo Bypass 2012-2013
    The Experimental Agricultural Floodplain Habitat Investigation at Knaggs Ranch on Yolo Bypass 2012-2013 Preliminary Report to US Bureau of Reclamation, October 1, 2013 Knaggs Ranch on Yolo Bypass: a win, win, win for salmon, waterfowl and agriculture. Photo: J. Katz A cooperative project of CalTrout, The Center for Watershed Sciences at the University of California, Davis & The California Department of Water Resources In cooperation with landowner partners Cal Marsh and Farm Ventures, LLC Knaggs Ranch, LLC with additional support from The NOAA Southwest Fisheries Science Center The California Department of Fish and Wildlife Report prepared by: Jacob Katz1, Carson Jeffres2, Louise Conrad4, Ted Sommer4, Nick Corline2, Joshua Martinez4, Steve Brumbaugh4, Lynn Takata4, Naoaki Ikemiyagi4, Joe Kiernan5 and Peter Moyle2,3 1California Trout, Central California Region, 930 Shiloh Rd, Bldg. 40, Suite 6 Windsor, CA 95492 2UC Davis Center for Watershed Sciences, 3Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA 4Department of Water Resources, Aquatic Ecology Section, Division of Environmental Services, 3500 Industrial Blvd. West Sacramento, CA 95691 5NOAA Fisheries, Southwest Fisheries Science Center, Fisheries Ecology Division, 110 Shaffer Road, Santa Cruz, CA 95060 EXECUTIVE SUMMARY At 24,000 ha, the Yolo Bypass is the Central Valley’s largest contiguous floodplain and provides critical fish and wildlife habitat (Sommer et al. 2001a). Flooding occurs in two out of three years on average, typically between the months of December and April. As a result, the Yolo Bypass represents one of the most frequent large-scale connections of river and floodplain left in the Central Valley.
    [Show full text]
  • C a S E S T U D Y R E P O R T Sherman Island Delta
    C A S E S T U D Y R E P O R T SHERMAN ISLAND DELTA PROJECT November 2013 Written by Bradley Angell, Richard Fisher & Ryan Whipple a project of Ante Meridiem Incorporated with the direct support of the Delta Alliance International Foundation © 2013 Ante Meridiem Incorporated ABSTRACT This report is an official beginning to a model design for Sherman Island, an important land mass that lies at the meeting point of the Sacramento and San Joaquin Rivers of the California Delta system. As design is typically dominated by a particular driving discipline or a paramount policy concern, the resulting decision-making apparatus is normally governed by that discipline or policy. After initial review of Sherman Island, such a “single” discipline or “principle” policy approach is not appropriate for Sherman Island. At this critical physical place at the heart of California Delta, an inter-disciplinary and equal-weighted policy balance is necessary to meet both the immediate and long-term requirements for rehabilitation of the project site. Exhibiting the collected work of a small team of design and policy specialists, the Case Study Report for the Sherman Island Delta Project outlines the multitude of interests, disciplines and potential opportunities for design expression on the selected 1,000 acre portion of Sherman Island under review. Funded principally by a generous grant from the Delta Alliance, the team researched applicable uses and technologies with a pragmatic case study approach to the subject, physically documenting exhibitions of each technology as geographically close to the project site as possible. After study and on-site documentation, the team compiled this wealth of discovery in three substantive chapters: a site characterization report, the stakeholders & goals assessment, and a case study report.
    [Show full text]