A Report on the Potential of Renewable Energies in Peninsular Spain

Total Page:16

File Type:pdf, Size:1020Kb

A Report on the Potential of Renewable Energies in Peninsular Spain A report on the potential of renewable energies in peninsular Spain © Raúl Bartolomé Greenpeace Madrid San Bernardo, 107, 28015 Madrid Tel.: 91 444 14 00 - Fax: 91 447 15 98 [email protected] Greenpeace Barcelona Ortigosa, 5 - 2º 1ª, 08003 Barcelona Tel.: 93 310 13 00 - Fax: 93 310 51 18 Authors: José Luis García Ortega and Alicia Cantero Layout and design: De••Dos, espacio de ideas Greenpeace is a politically and economically independent organisation. Join by calling 902 100 505 or at www.greenpeace.es This report has been printed on paper recycled after use and bleached without chlorine, with Blue Angel certification, in order to preserve forests, save energy and prevent the pollution of seas and rivers. November 2005 Contents 1. Introduction 04 2. Hypothesis and methodology 06 3. The main results of the study 08 3.1. Results by technologies 08 1. Geothermal 09 2. Hydro-electric 10 3. Biomass 11 4. Waves 12 5. Off shore wind 13 6. On-shore wind 14 7. Solar chimney 15 8. Solar photovoltaic integrated into buildings 16 9. Solar photovoltaic with tracking 17 10. Concentrated solar thermal 18 3.2. Summary of results 19 Fully available renewable resources 19 Comparison with the Renewable Energy Plan 20 Meeting electricity demand: proposed generation mix 21 Meeting total energy demand: proposed mix 22 3.3. Results by Autonomous Community 24 Andalusia 24 Aragon and Asturias 25 Cantabria and Castile-La Mancha 26 Castile-Leon and Catalonia 27 Extremadura and Galicia 28 Madrid and Murcia 29 Navarre and the Basque Country 30 La Rioja and Valencia 31 4. Conclusions of the report and Greenpeace's demands 32 Conclusions 32 What Greenpeace is asking for 33 5. Appendix 34 Glossary of terms 34 Renewables 2050. A report on the potential for renewable energies in peninsular Spain 1. Introduction Greenpeace has commissioned the Technology could be in 2050. Finally, the maximum possible Research Institute at the Pontificia Comillas Uni- contribution of each of these is developed in versity to carry out a technical analysis of the terms of power capacity and electricity genera- viability of a system of electricity generation in tion, imposing environmental, social and techno- peninsular Spain with the maximum possible logical criteria on the type of land available. contribution of renewable energies. The analy- sis takes into account the main factors condi- Secondly, at a European level, Greenpeace has tioning the availability of resources, environ- also carried out specific analyses. In this area, the mental restrictions and other types of land use, German institute DLR has established a scenario the link between demand and generating for Greenpeace International published with the potential and the transport capacity of the elec- title “Energy Revolution: a sustainable pathway to tricity network. The results will be presented in a clean energy future for Europe”. This scenario successive reports under the general name demonstrates that the restructuring of the energy "Energy Revolution". system to meet ambitious environmental targets is viable, and marks out a transition to replacing This document shows the main results of the conventional energies with renewable ones, so report “Renewables 2050. A report on the poten- the latter could then provide half the energy mix tial for renewable energies in peninsular Spain”, by the middle of the century. the first in this project which is carrying out the most detailed published analysis to date in this Why this project? country of development scenarios for the differ- ent renewable technologies. The report provides Our energy system is at a crossroads. The mas- ceilings for the potential and generation of these sive consumption of fossil fuels, which are our technologies, clearly showing the different main energy source, is causing climate change restrictions both in terms of availability of energy which is already making itself felt. If we continue resources and land use. along this road it is highly probable that we will exceed Nature's limits, which could make it As a methodology, population and energy impossible for the majority of species to adapt demand scenarios were first drawn up for penin- themselves to such a strong, rapid change, while sular Spain, based on those already published by millions of people will suffer the conditions of an other institutions. Based on these and on com- uninhabitable environment in the form of parisons with actual and forecast development famines, floods, drought… for each of the renewable technologies, an analy- sis is made of what their position and activity 4 Introduction Meanwhile, governments and energy compa- much tougher than the current ones established nies continue to make decisions on multi-mil- at Kyoto. lion dollar developments without taking this · The review of energy planning promised by the reality into account, prolonging an unsustain- Spanish Prime Minister, which must establish able energy model for decades. There is even the energy demand it is planned to supply over the continual emergence of smokescreens (the the coming years, the energy infrastructures misnamed “clean” coal, construction of new that will therefore be necessary and whether nuclear power stations or extension of the life these will continue to be based on the massive of the current ones, the myth of the future construction of fossil fuel power stations or on fusion reactor, hydrogen obtained with dirty an acceleration of investment in renewables. energies, carbon sinks, capture and storage of · The nuclear debate, which must clarify how the CO2, etc.), presenting false solutions to climate Government is going to keep its promise to change while they conceal other serious envi- abandon nuclear energy and stand up to the ronmental effects and take up massive financial pressure from big companies which are trying resources which are vital for the real solutions. to lengthen the useful lives of the old nuclear power stations. The only real solution to climate change lies in · Reform of the electricity sector, taking into the complete replacement of fossil fuels by account the White Paper's proposals to guide it renewable energies, together with the more effi- towards sustainability. cient use of energy. However, each time this · The role consumers could play in being able to approach is presented, basic questions come up: choose clean electricity. are renewables sufficient to cover society's demand for energy? Do we need to develop The aim of this project is to find out whether renewable other energy sources to cover the supposed lim- energies are enough to meet society's demand for energy itations of renewables? or whether, by contrast, we need to develop other energy sources to cover the supposed limitations of renewables. The answers to these questions will condition a Ultimately, it is a matter of trying to confirm whether it is whole series of crucial political and economic possible to find the solution to climate change through the decisions that are going to be taken in the next complete replacement of fossil fuels by renewable few months and years in this country and in the energies together with a more efficient use of energy. area of the European Union and which are going to have a decisive influence on humanity's capacity to prevent dangerous climate change: · The next renewable energies directive, which has to set targets for the contribution of these energies to the energy mix for each EU country with the horizon 2020. · The National Allocation Plan for emissions for the period 2008-2012, which will determine this country's willingness to meet the Kyoto Proto- col Commitment. · The international negotiations beginning at the first meeting of the Kyoto Protocol signatory countries held in Montreal after the end of November 2005, to set new emission reduction targets beyond 2012, which will have to be 5 Renewables 2050. A report on the potential for renewable energies in peninsular Spain 2. Hypothesis and methodology The study starts from the following hypotheses: · Final energy demand: 109kWh/inhabitant/day, resulting in 1,525TWh/year. · Spanish peninsular population in 2050: 38.32 million inhabitants, essentially divided in Specific hypotheses have also been taken for the same proportions as in 2003. each technology. · Demand for electrical energy: 20kWh/inhabi- tant/day, which gives a peninsular electricity Concerning the methodology followed, it is a demand of 280TWh/year in 2050. This quantity is matter of determining the capacity and genera- obtained by extrapolating from conservative EU tion ceilings for each technology, with these scenarios, deducting a certain quantity from final understood as the power that can technically be usage demand for energies that are renewable developed with the technology considering the at origin (80% of electricity demand for hot water resources available and imposing the relevant thanks to the use of solar thermal and biomass technical limits for the development of the boilers; 80% of electric space heating demand resource. thanks to the use of bioclimatic architecture, solar thermal energy, biomass boilers and better The units used to express the capacity ceilings insulation in buildings; 60% of demand for elec- are gigawatts (GW, equivalent to a thousand trical space refrigeration thanks to the use of megawatts or a billion watts), while generation solar thermal energy with absorption machines ceilings are expressed in terawatt-hours (TWh, and bioclimatic techniques), but without includ- equivalents to a billion kilowatt-hours). The rea- ing savings due to demand-side management. son for using such "large" and not very common · Same division in 2050 as in 2003 of the propor- units is that they make it easier to express the tion of electricity demand per head in each very high quantities for ceilings which are autonomous community with respect to the obtained as a result. average for Spain. · Same electricity demand per head in all To calculate the capacity ceilings, we have provinces of the same autonomous community.
Recommended publications
  • Petroleum in the Spanish Iberian Peninsula
    J. E. Ortiz, 0. Puche, I. Rabano and L. F. Mazadiego (eds.) History of Research in Mineral Resources. Cuadernos del Museo Geominero, 13. Institute Geologico y Minero de Espana, Madrid. ISBN 978-84-7840-856-6 © Institute Geologico y Minero de Espana 2011 PETROLEUM IN THE SPANISH IBERIAN PENINSULA Octavio Puche Riart, Luis F. Mazadiego Martinez and Jose E. Ortiz Menendez E.T.S. de Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid, Spain. [email protected] Abstract. The main events of the history of petroleum in Spain are the following: 1) The mining concession of petroleum named El Progreso is the first one in Spain and occurred only seven years after Edwin Drake (1819-1880) drilled the first oil well in Pennsylvania. 2) The first survey of oil production in Spain, well known as the Tejon borehole, was conducted by the Sondeos de Huidobro Company in 1900, in Huidobro (Burgos), and reached 501 m of depth. 3) In 1964 CAMPSA and AMOSPAIN found petroleum in the Ayoluengo field (Burgos), with a borehole of 1,349 m of depth. This was the first and only petroleum field in the continental Spain in this zone. The Ayoluengo petroleum field has been active during 35 years. In this paper we will review the history of petroleum in peninsular Spain. 1. INTRODUCTION It has been historically known the existence of several oil evidences of solid, liquid and gaseous seeps in Spain. These evidences have guided the identification of areas that are favorable for the research of petroleum deposits.
    [Show full text]
  • A High-Resolution Daily Gridded Precipitation Dataset for Spain – an Extreme Events Frequency and Intensity Overview
    Earth Syst. Sci. Data, 9, 721–738, 2017 https://doi.org/10.5194/essd-9-721-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview Roberto Serrano-Notivoli1,2,3, Santiago Beguería3, Miguel Ángel Saz1,2, Luis Alberto Longares1,2, and Martín de Luis1,2 1Department of Geography and Regional Planning, University of Zaragoza, Zaragoza, 50009, Spain 2Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, 50009, Spain 3Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, 50059, Spain Correspondence to: Roberto Serrano-Notivoli ([email protected]) Received: 5 May 2017 – Discussion started: 7 June 2017 Revised: 17 August 2017 – Accepted: 18 August 2017 – Published: 14 September 2017 Abstract. A high-resolution daily gridded precipitation dataset was built from raw data of 12 858 observato- ries covering a period from 1950 to 2012 in peninsular Spain and 1971 to 2012 in Balearic and Canary islands. The original data were quality-controlled and gaps were filled on each day and location independently. Using the serially complete dataset, a grid with a 5 × 5 km spatial resolution was constructed by estimating daily pre- cipitation amounts and their corresponding uncertainty at each grid node. Daily precipitation estimations were compared to original observations to assess the quality of the gridded dataset. Four daily precipitation indices were computed to characterise the spatial distribution of daily precipitation and nine extreme precipitation in- dices were used to describe the frequency and intensity of extreme precipitation events.
    [Show full text]
  • Spain Groundwater Country Report.Pdf
    Groundwater in the Southern Member States of the European Union: an assessment of current knowledge and future prospects Country report for Spain Contents 1. Introduction ............................................................................................................................. 1 2. Scope ....................................................................................................................................... 2 3. Groundwater Resources .......................................................................................................... 3 4. Groundwater Use in Spain ...................................................................................................... 6 5. The Economic Aspects of Groundwater Use in Spain............................................................ 8 6. Pressures, Impacts and Measures to Achieve the Goals of the Water Framework Directive ........................................................................................ 19 7. Institutions for Groundwater Governance ............................................................................ 25 8. Conclusions ........................................................................................................................... 33 References ................................................................................................................................. 33 Relevant Websites ..................................................................................................................... 38 GROUNDWATER
    [Show full text]
  • The Landforms of Spain
    UNIT The landforms k 1 o bo ote Work in your n of Spain Spain’s main geographical features Track 1 Spain’s territory consists of a large part of the Iberian Peninsula, the Canary Islands in the Atlantic Ocean, the Balearic Islands in the Mediterranean Sea and the autonomous cities of Ceuta and Melilla, located on the north coast of Africa. All of Spain’s territory is located in the Northern Hemisphere. Peninsular Spain shares a border with France and Andorra to the north and with Portugal, which is also on the Iberian Peninsula, to the west. The Cantabrian Sea and the Atlantic Ocean border the north and west coast of the Peninsula and the Mediterranean Sea borders the south and east coast. The Balearic Islands are an archipelago in the Mediterranean Sea. The Canary Islands, however, are an archipelago located almost 1 000 kilometres southwest of the Peninsula, in the middle of the Atlantic Ocean, just north of the coast of Africa. Spain is a country with varied terrain and a high average altitude. Spain’s high average altitude is due to the numerous mountain ranges and systems located throughout the country and the fact that a high inner plateau occupies a large part of the Peninsula. The islands are also mostly mountainous and have got significant elevations, especially in the Canary Islands. Northernmost point 60°W 50°W 40°W 30°W 20°W 10°W 0° 10°E 20°E 30°E 40°E 50°E 60°N Southernmost point Easternmost point s and Westernmost point itie y iv ou ct ! a m 50°N r Estaca o S’Esperó point (Menorca), f de Bares, 4° 19’ E d ATLANTIC 43° 47’ N n a L 40°N ltar Gibra Str.
    [Show full text]
  • 39 • Spanish Peninsular Cartography, 1500–1700 David Buisseret
    39 • Spanish Peninsular Cartography, 1500–1700 David Buisseret Introduction well aware of the value of maps, and, like his successor, Philip II, was seriously concerned with encouraging the Spanish peninsular and European cartography under the production of a good map of the peninsula. Both Habsburgs has largely been overshadowed in the literature Charles V and Philip II were surrounded by nobles and by accounts of the remarkable achievements of Spanish advisers who used and collected maps, as were their suc- mapmakers in the New World. Yet Spain’s cartographers, cessors Philip III, Philip IV, and Charles II. both of the Old World and of the New, came out of the If none of them succeeded in their various efforts to pro- same institutions, relied on the same long-established tra- duce a new and accurate printed map of the whole penin- ditions, called on the same rich scientific milieu, and in sula, it was partly due to the general decline that set in dur- many cases developed similar solutions to their respective ing the second part of the reign of Philip II. For a variety cartographic problems.1 of reasons, the economy fell into disarray, and the society In the late Middle Ages, many influences were at work became less and less open to outside influences. This had in the territories of the Catholic Monarchs (of Castile and a particularly harmful effect on intellectual life; the print- Aragon), with many different cartographic traditions. To ing industry, for instance, was crippled both by the eco- the west, the Portuguese were pushing the portolan chart nomic downturn and by rigid regulation of the press.
    [Show full text]
  • Spain Country Handbook 1
    Spain Country Handbook 1. This handbook provides basic reference information on Spain, including its geography, history, government, military forces, and communications and transportation networks. This information is intended to familiarize military personnel with local customs and area knowledge to assist them during their assignment to Spain. 2. This product is published under the auspices of the U.S. Department of Defense Intelligence Production Program (DoDIPP) with the Marine Corps Intelligence Activity designated as the community coordinator for the Country Handbook Program. This product reflects the coordinated U.S. Defense Intelligence Community position on Spain. 3. Dissemination and use of this publication is restricted to official military and government personnel from the United States of America, United Kingdom, Canada, Australia, NATO member countries, and other countries as required and designated for support of coalition operations. 4. The photos and text reproduced herein have been extracted solely for research, comment, and information reporting, and are intended for fair use by designated personnel in their official duties, including local reproduction for training. Further dissemination of copyrighted material contained in this document, to include excerpts and graphics, is strictly prohibited under Title 17, U.S. Code. CONTENTS KEY FACTS. 1 U.S. MISSION . 2 U.S. Embassy. 2 U.S. Consulate . 2 Travel Advisories. 2 Entry Requirements . 3 Customs Restrictions . 3 GEOGRAPHY AND CLIMATE . 5 Geography . 5 Bodies of Water. 6 Drainage . 6 Topography . 6 Climate. 7 Vegetation . 10 TRANSPORTATION AND COMMUNICATION . 11 Transportation . 11 Roads . 11 Rail . 14 Maritime . 16 Communication . 17 Radio and Television. 17 Telephone and Telegraph . 18 Newspapers and Magazines .
    [Show full text]
  • The Balearic Islands (BAL) and the Canary Islands (CAN), Covering a Total Area of 504,660 Km2 (IP: 492,175 Km2; BAL: 4,992 Km2; CAN: 7,493 Km2)
    1 Input data The study area comprises the whole Spanish territory (Figure S1) including the Iberian Peninsula (IP), the Balearic Islands (BAL) and the Canary Islands (CAN), covering a total area of 504,660 km2 (IP: 492,175 km2; BAL: 4,992 km2; CAN: 7,493 km2). The altitudes range from 0 m a.s.l. at the coast to maximums of 3,404 m a.s.l. (Aneto summit) in the IP, 358 m a.s.l. (Toro Mountain summit) in BAL and 3,718 m a.s.l. (Teide summit) in CAN. Figure S1: Geographical context of the study area and names of places mentioned in the text. Most of the input data sourced from the Spanish Meteorological Agency (Aemet) (IP: 90.8%; BAL: 90.1%; CAN: 90.7%) and from the Spanish Ministry of Agriculture and Environment (MAGRAMA) (IP: 8.2%; BAL: 8.9%; CAN: 8.3%) using the 1901-2014 period for IP and 1971-2014 period for BAL and CAN. More than 5,000 stations were used as original observations with more than 33 millions of raw data (Table S1). Table S1. Summary of all the used information of maximum and minimum temperature in the Spanish Iberian Peninsula (PEN), the Balearic (BAL) and Canary Islands (CAN). Number of months: months with at least 1 daily record in TMAX or TMIN; Number of complete months: months with records in all days; Number of daily pairs: days with record of TMAX and TMIN. The figures are referred to 1901-2014 period in PEN and 1971- 2014 in BAL and CAN.
    [Show full text]
  • Parliamentary Questions
    27/01/2016 Written question ­ Spanish customs checks ­ E­000365/2013 Parliamentary questions 15 January 2013 E­000365­13 Question for written answer to the Commission Rule 117 Sir Graham Watson (ALDE) Subject: Spanish customs checks Answer(s) In response to Question E­009971/2011, the Commission stated that it does not routinely monitor the customs checks performed by the national authorities. However, it suggested that Member States should select custom controls based on ‘risk management’ factors as provided for in the customs legislation. Gibraltar remains outside the customs union, and therefore alcohol and tobacco may be available at lower cost than in Spain. The Spanish authorities have implemented thorough checks on individuals and vehicles at the La Línea frontier. On some days every vehicle will be checked and inspected for contraband, and such an approach can lead to severe delays at the border — sometimes of up to six hours. The Agreement between the European Economic Community and the Principality of Andorra which entered into force on 1 July 1991 establishes a customs union with most­favoured nation status between the Principality and the EU. However, VAT and duty on alcohol and tobacco are far lower in Andorra than in Spain. Melilla and Ceuta benefit from an autonomous preferential agreement with the EU, but neither is part of the EU’s customs territory. Citizens travelling from these territories must also abide by customs and tax allowances for travellers similar to those applying to people travelling from outside the EU, just as is the case for those crossing from Gibraltar into Spain.
    [Show full text]
  • The Forest Map of Spain 1:200,000. Methodology and Analysis of General Results J
    Invest Agrar: Sist Recur For (2006) Fuera de serie, 24-39 The Forest Map of Spain 1:200,000. Methodology and analysis of general results J. Ruiz del Castillo y Navascués1, C. López Leiva2, J. I. García Viñas2*, J. M. Villares Muyo2, P. Tostado Rivera2 and C. García Rodríguez3 1 Ferraz, 24, 4.º. 28008 Madrid. Spain 2 EUIT Forestal. Universidad Politécnica de Madrid. Ciudad Universitaria, s/n. 28040 Madrid. Spain 3 Dirección General para la Biodiversidad. Ministerio de Medio Ambiente. Gran Vía de San Francisco, 4. 28005 Madrid. Spain Abstract First of all, the main descriptive elements of vegetation used in the Spanish Forest Map on scale 1:200,000 (MFE2C) are put forward. Secondly, this paper includes an explanation of how plant cover maps are a supplementary tool for fo- rest inventories in order to evaluate the actual state of vegetation. As an example, there is a description of characte- ristics of the current Spanish vegetation regarding the 4 descriptive elements of MFE2C: large climatic domains, struc- ture, evolution level and dominant plant communities. Key words: vegetation, climate, structure, evolutionary level, dominant plant communities. Resumen El Mapa Forestal de España escala 1:200.000. Metodología y análisis de resultados En primer lugar se exponen los principales elementos descriptivos de la vegetación empleados en el Mapa Fores- tal de España a escala 1:200.000 (MFE2C). En segundo lugar se muestra cómo los mapas forestales son un instru- mento de los inventarios para evaluar el estado de la vegetación. Como ejemplo, se muestran las características de la vegetación actual de España en relación a los 4 elementos descriptivos del Mapa Forestal de España 1:200.000: gran- des ámbitos climáticos, estructura, nivel evolutivo y agrupaciones vegetales dominantes.
    [Show full text]
  • Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands
    Article Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands Marina Peña-Gallardo 1,*, Sergio M. Vicente-Serrano 1, J. Julio Camarero 1 ID , Antonio Gazol 1 ID , Raúl Sánchez-Salguero 2, Fernando Domínguez-Castro 1 ID , Ahmed El Kenawy 1,3, Santiago Beguería-Portugés 4, Emilia Gutiérrez 5, Martin de Luis 6 ID , Gabriel Sangüesa-Barreda 1 ID , Klemen Novak 6,7, Vicente Rozas 8, Pedro A. Tíscar 9, Juan C. Linares 2 ID , Edurne Martínez del Castillo 6 ID , Montserrat Ribas Matamoros 5, Ignacio García-González 10 ID , Fernando Silla 11 ID , Álvaro Camisón 12, Mar Génova 13 ID , José M. Olano 8 ID , Luis A. Longares 6, Andrea Hevia 14 and J. Diego Galván 15 1 Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain; [email protected] (S.M.V.-S.); [email protected] (J.J.C.); [email protected] (A.G.); [email protected] (F.D.-C.); [email protected] (A.E.K.); [email protected] (G.S.-B.) 2 Departamento de Sistemas Físicos, Químicos y Naturales, Universidad de Pablo de Olavide, 41013 Sevilla, Spain; [email protected] (R.S.-S.); [email protected] (J.C.L.) 3 Department of Geography, Mansoura University, 35516 Mansoura, Egypt 4 Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), 50192 Zaragoza, Spain; [email protected] 5 Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona University, 08028 Barcelona, Spain; [email protected] (E.G.); [email protected] (M.R.M.) 6 Departamento de Geografía y Ordenación del Territorio—IUCA, Universidad de Zaragoza, 50009 Zaragoza, Spain; [email protected] (M.d.L.); [email protected] (K.N.); [email protected] (E.M.d.C.); [email protected] (L.A.L.) 7 Departamento de Ecología, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03080 Alicante, Spain 8 Departamento de Ciencias Agroforestales, EU de Ingenierias Agrarias, iuFOR—Universidad de Valladolid, 42004 Soria, Spain; [email protected] (V.R.); [email protected] (J.M.O.) 9 Centro de Capacitación y Experimentación Forestal.
    [Show full text]
  • Imagining Ceuta and Melilla
    Bard College Bard Digital Commons Senior Projects Spring 2019 Bard Undergraduate Senior Projects Spring 2019 Imagining Ceuta and Melilla Hailey Cassidy Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2019 Part of the International and Area Studies Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Cassidy, Hailey, "Imagining Ceuta and Melilla" (2019). Senior Projects Spring 2019. 78. https://digitalcommons.bard.edu/senproj_s2019/78 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Imagining Ceuta and Melilla: How ‘Nation-ness’ Prevails in Extraterritorial Communities Senior Project Submitted to The Division of Social Studies of Bard College By Hailey Cassidy Annandale-on-Hudson, New York May 2019 Acknowledgements To my roommates, Savannah Williams and Maddy Weisman. Thank you for making me laugh, spending many nights in our home knowing nothing, being my Vine professors, and for loving me almost as much as I love you guys. To the fourth floor library club. To Caroline Gluck, for entertaining me during the long nights on our boat, and to Katie Hopper and Casey Witte, thank you for supporting me so hard.
    [Show full text]
  • Analysis of Hail Damages and Temperature Series for Peninsular Spain
    Nat. Hazards Earth Syst. Sci., 11, 3415–3422, 2011 www.nat-hazards-earth-syst-sci.net/11/3415/2011/ Natural Hazards doi:10.5194/nhess-11-3415-2011 and Earth © Author(s) 2011. CC Attribution 3.0 License. System Sciences Analysis of hail damages and temperature series for peninsular Spain A. Saa Requejo1, R. Garc´ıa Moreno2, M. C. D´ıaz Alvarez1, F. Burgaz3, and M. Tarquis1 1CEIGRAM. E.T.S.I. Agronomos,´ Universidad Politecnica´ de Madrid, Spain 2Universida de Da Coruna,˜ Departamento de Ciencias Da Navegacion´ e Da Terra, Facultad de Ciencias, Coruna,˜ Spain 3Entidad Nacional de Seguros Agrarios (ENESA) Ministry of the Natural, Rural and Marine Environments, Madrid, Spain Received: 11 February 2011 – Revised: 12 June 2011 – Accepted: 19 October 2011 – Published: 22 December 2011 Abstract. Hail is a serious concern for agriculture on the 1 Introduction Iberian Peninsula. Hailstorms affect crop yield and/or qual- ity to a degree that depends on the crop species and the phe- Hail events represent an important natural disaster associated nological time. In Europe, Spain is one of the countries that with great economic losses in several regions, mainly in Eu- experience relatively high agricultural losses related to hail- rope. In Spain, the Combined Agrarian Insurance System storms. It is of high interest to study models that can support covers hail events for most types of crop losses. Insurance calculations of the probabilities of economic losses due to coverage of hail events provides a means of economic recov- hail damage and of the tendency over time for such losses. ery for most producers, mainly in the Mediterranean region, Some studies developed in France and the Netherdlands where the highest incidence of losses due to hailstorms is show that the summer mean temperature was highly corre- recorded (Llasat et al., 2009).
    [Show full text]