1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

1. Introduction ADAPTIVE ERROR CONTROL FOR FINITE ELEMENT APPROXIMATIONS OF THE LIFT AND DRAG COEFFICIENTS IN VISCOUS FLOW MICHAEL GILES MATS G LARSON J MARTEN LEVENSTAM AND ENDRE SULI Abstract We derive estimates for the error in a variational approximation of the lift and drag co ecients of a b o dy immersed into a viscous ow governed by the Navier Stokes equations The variational approximation is based on computing a certain weighted average of a nite element approximation to the solution of the NavierStokes equations Our main result is an a posteriori estimate that puts a b ound on the error in the lift and drag co ecients in terms of the lo cal mesh size a lo cal residual quantity and a lo cal weight describing the lo cal stability prop erties of an asso ciated linear dual problem The weight may b e approximated by solving the dual problem numerically The error b ound is thus computable and can b e used for quantitative error estimation we apply it to design an adaptive nite element algorithm sp ecically for the approximation of the lift and drag co ecients Introduction Often the purp ose of numerical computations in mathematical mo delling of physical phenomena is to approximate a functional of the analytical solution to a dierential equa tion represented as an integral average of the solution rather than to obtain accurate p ointwise values of the solution itself in such instances solving the dierential equation considered is only an intermediate stage in the pro cess of computing the primary quan tities of concern For example in uid dynamics one may b e concerned with calculating the lift and drag co ecients of a b o dy immersed into a viscous incompressible uid whose ow is governed by the NavierStokes equations The lift and drag co ecients are dened as integrals over the b oundary of the b o dy of the stress tensor comp onents normal and tangential to the ow resp ectively Similarly in elasticity theory the quantities of prime interest such as the stress intensity factor or the moments of a shell or a plate are derived quantities The ob jective of this pap er is to obtain a posteriori error b ounds for nite element ap proximations of functionals that arise in uid dynamics sp ecically we shall b e concerned with the construction and the a posteriori error analysis of nite element approximations Mathematics Subject Classication N N N Key words and phrases NavierStokes equations lift and drag co ecients adaptive nite element metho d a posteriori error estimates mesh renement Submitted to SIAM J Num Anal M GILES M LARSON M LEVENSTAM AND E SULI to the lift and drag co ecients in a viscous incompressible ow and the implementa tion of these b ounds into an adaptive nite element algorithm with reliable and ecient quantitative control of the error It is frequently the case that the functional under consideration may b e expressed in various forms which are mutually equivalent at the continuous level but result in very dierent approximations under discretisation Thus it is imp ortant to select the appropriate representation of the functional b efore formulating its discretisation While this basic idea has b een widely exploited in structural mechanics see and and heat conduction see in p ostpro cessing nite element approximations it do es not seem to have p enetrated the eld of computational uid dynamics We approximate the solution u u p of the NavierStokes equations where u rep resents the velo city of the uid and p its pressure by means of a nite element metho d using piecewise p olynomials of degree k for u and degree k for p Let N u denote the b oundary integral representing the lift or drag co ecient dep ending on the choice of the function dened on the b oundary of the computational domain the precise denition of N u will b e given in Section Using the dierential equation we may express N u in a variational form involving test functions that are equal to on the b oundary of the h domain this form will b e the basis for constructing an accurate approximation N u to h N u Provided the b oundary is suciently smo oth and there are no variational crimes h the order of convergence of N u to N u is k while for the naive direct approximation h N u the order of convergence is typically only k h h Our main result is a weighted a posteriori estimate for the error N u N u of the h form X h R u h u j c jN u N h h T h where the sum is taken over the elements in a triangulation T of the computational h domain h is the diameter of given that is a real numb er with k R u is h an element residual quantity is a lo cal weight and c c is a p ositive constant The element residual quantity R u is a computable b ound on the actual residual obtained h by inserting the approximate solution into the dierential equation The derivation of h u in terms the estimate is based on a representation formula for the error N u N h of the computed solution u and the solution to an asso ciated linear dual equation with h homogeneous righthand side and nonhomogeneous b oundary data The weight describ es the lo cal size of derivatives of order of the solution to the dual problem The data for the dual problem is known and therefore the weight can b e computed by solving the dual problem numerically Therefore the righthand side of the estimate is computable and can b e applied to design an adaptive nite element algorithm for approximating N u h u The fact stated and to ensure ecient quantitative control of the error N u N h h u is k follows from the error representation ab ove that the order of convergence of N h formula together with an a priori estimate of the global error u u in the nite element h metho d Indeed for a linear elliptic mo del problem it can b e shown using results obtained in that the a posteriori estimate is sharp ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS In a weighted a posteriori estimate is given for the error in the lift and the drag however unlike our approach it is based on a direct approximation using N u For a h posteriori estimates of the error u u in nite element approximations of the solution to h the NavierStokes equations in various norms see and references therein a general intro duction to a posteriori error analysis is given in Finally we mention that an a priori error analysis of the approximation metho d employed here for a linear convectiondiusion equation is presented in The remainder of this pap er is organized as follows in order to illustrate the key ideas in Section we outline the theory for a linear elliptic mo del problem In Section we consider the extension of this analysis to the Stokes system which mo dels the ow of a viscous incompressible uid at low velo cities we derive an a posteriori estimate of the error in a nite element approximation to the lift and drag co ecients In Section we further extend our results to the NavierStokes equations and present numerical computations for the drag co ecient of a cylinder in a channel these illustrate the quality of the adaptive error control based on the a posteriori error b ound Finally in Section we summarise our results and draw some conclusions A model problem The mo del problem and the nite element metho d We b egin by intro ducing d some notation Let b e a b ounded domain in R d or with Lipschitzcontinuous d 2 b oundary For an op en set K in R let L K signify the space of realvalued square s integrable functions on K with norm k k H K will denote the Sob olev space of real K s s index s equipp ed with the norm k k and corresp onding seminorm j j with a H (K ) H (K ) s s slight abuse of the notation we shall frequently write kD uk instead of juj s K H (K ) 12 1 1 Given that is an element of H we let H H denote the space of all v in 1 1 H H which satisfy the Dirichlet b oundary condition v Finally we adopt j the following notational convention generic constants that are indep endent of the problem and the mesh size are denoted by c while constants that dep end on the problem but not on the mesh size are lab elled C with a subscript when necessary As a rst mo del problem we consider the b oundaryvalue problem r u f in u on 2 2 where f L L and u Aru with A a uniformly p ositive denite d d matrix with continuous realvalued entries dened on This problem has a unique 1 In order to dene the corresp onding nite element approximation weak solution u H 0 h 1 we intro duce a family of nitedimensional spaces V contained in H which consist of continuous piecewise p olynomials of degree k dened on a triangulation T of We denote h the diameter of a triangle T by h It will always b e assumed that the triangulation is h d shap eregular ie there exists a p ositive constant c such that vol c h where vol is 12 the ddimensional volume of Further for each function H such that v j h h h h for some v V we let V V b e the space of all w V with w j In particular h h V is the space of all v V which vanish on the b oundary 0 M GILES M LARSON M LEVENSTAM AND E SULI h The nite element approximation of reads nd u V such that h 0 h au v f v for all v V h 0 2 Here and b elow denotes the scalar pro duct in L and av w v rw T 1 T rv A rw for v w H where A is the transp ose of A Approximation of the b oundary ux In this section we shall construct a nite element approximation to the b oundary ux Z N u n u ds 1 where n denotes the unit outward normal vector to In order to do so
Recommended publications
  • Experimental Analysis of a Low Cost Lift and Drag Force Measurement System for Educational Sessions
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 Experimental Analysis of a Low Cost Lift and Drag Force Measurement System for Educational Sessions Asutosh Boro B.Tech National Institute of Technology Srinagar Indian Institute of Science, Bangalore 560012 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A low cost Lift and Drag force measurement wind- tunnel and used for educational learning with good system was designed, fabricated and tested in wind tunnel accuracy. In addition, an indirect wind tunnel velocity to be used for basic practical lab sessions. It consists of a measurement capability of the designed system was mechanical linkage system, piezo-resistive sensors and tested. NACA airfoil 4209 was chosen as the test subject to NACA Airfoil to test its performance. The system was tested measure its performance and tests were done at various at various velocities and angle of attacks and experimental angles of attack and velocities 11m/s, 12m/s and 14m/s. coefficient of lift and drag were then compared with The force and coefficient results obtained were compared literature values to find the errors. A decent accuracy was with literature data from airfoil tools[1] to find the deduced from the lift data and the considerable error in system’s accuracy. drag was due to concentration of drag forces across a narrow force range and sensor’s fluctuations across that 1.1 Methodology range. It was inferred that drag system will be as accurate as the lift system when the drag forces are large.
    [Show full text]
  • Sailing for Performance
    SD2706 Sailing for Performance Objective: Learn to calculate the performance of sailing boats Today: Sailplan aerodynamics Recap User input: Rig dimensions ‣ P,E,J,I,LPG,BAD Hull offset file Lines Processing Program, LPP: ‣ Example.bri LPP_for_VPP.m rigdata Hydrostatic calculations Loading condition ‣ GZdata,V,LOA,BMAX,KG,LCB, hulldata ‣ WK,LCG LCF,AWP,BWL,TC,CM,D,CP,LW, T,LCBfpp,LCFfpp Keel geometry ‣ TK,C Solve equilibrium State variables: Environmental variables: solve_Netwon.m iterative ‣ VS,HEEL ‣ TWS,TWA ‣ 2-dim Netwon-Raphson iterative method Hydrodynamics Aerodynamics calc_hydro.m calc_aero.m VS,HEEL dF,dM Canoe body viscous drag Lift ‣ RFC ‣ CL Residuals Viscous drag Residuary drag calc_residuals_Newton.m ‣ RR + dRRH ‣ CD ‣ dF = FAX + FHX (FORCE) Keel fin drag ‣ dM = MH + MR (MOMENT) Induced drag ‣ RF ‣ CDi Centre of effort Centre of effort ‣ CEH ‣ CEA FH,CEH FA,CEA The rig As we see it Sail plan ≈ Mainsail + Jib (or genoa) + Spinnaker The sail plan is defined by: IMSYC-66 P Mainsail hoist [m] P E Boom leech length [m] BAD Boom above deck [m] I I Height of fore triangle [m] J Base of fore triangle [m] LPG Perpendicular of jib [m] CEA CEA Centre of effort [m] R Reef factor [-] J E LPG BAD D Sailplan modelling What is the purpose of the sails on our yacht? To maximize boat speed on a given course in a given wind strength ‣ Max driving force, within our available righting moment Since: We seek: Fx (Thrust vs Resistance) ‣ Driving force, FAx Fy (Side forces, Sails vs. Keel) ‣ Heeling force, FAy (Mx (Heeling-righting moment)) ‣ Heeling arm, CAE Aerodynamics of sails A sail is: ‣ a foil with very small thickness and large camber, ‣ with flexible geometry, ‣ usually operating together with another sail ‣ and operating at a large variety of angles of attack ‣ Environment L D V Each vertical section is a differently cambered thin foil Aerodynamics of sails TWIST due to e.g.
    [Show full text]
  • How Do Wings Generate Lift? 2
    GENERAL ARTICLE How Do Wings Generate Lift? 2. Myths, Approximate Theories and Why They All Work M D Deshpande and M Sivapragasam A cambered surface that is moving forward in a fluid gen- erates lift. To explain this interesting fact in terms of sim- pler models, some preparatory concepts were discussed in the first part of this article. We also agreed on what is an accept- able explanation. Then some popular models were discussed. Some quantitative theories will be discussed in this conclud- ing part. Finally we will tie up all these ideas together and connect them to the rigorous momentum theorem. M D Deshpande is a Professor in the Faculty of Engineering The triumphant vindication of bold theories – are these not the and Technology at M S Ramaiah University of pride and justification of our life’s work? Applied Sciences. Sherlock Holmes, The Valley of Fear Sir Arthur Conan Doyle 1. Introduction M Sivapragasam is an We start here with two quantitative theories before going to the Assistant Professor in the momentum conservation principle in the next section. Faculty of Engineering and Technology at M S Ramaiah University of Applied 1.1 The Thin Airfoil Theory Sciences. This elegant approximate theory takes us further than what was discussed in the last two sections of Part 111, and quantifies the Resonance, Vol.22, No.1, ideas to get expressions for lift and moment that are remarkably pp.61–77, 2017. accurate. The pressure distribution on the airfoil, apart from cre- ating a lift force, leads to a nose-up or nose-down moment also.
    [Show full text]
  • A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy Tech Library Kafb, Nm
    I A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY TECH LIBRARY KAFB, NM OL3042b NASA TN D-3767 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center SUMMARY A concept for the calculation of the vortex lift of sharp-edge delta wings is pre­ sented and compared with experimental data. The concept is based on an analogy between the vortex lift and the leading-edge suction associated with the potential flow about the leading edge. This concept, when combined with potential-flow theory modified to include the nonlinearities associated with the exact boundary condition and the loss of the lift component of the leading-edge suction, provides excellent prediction of the total lift for a wide range of delta wings up to angles of attack of 20° or greater. INTRODUCTION The aerodynamic characteristics of thin sharp-edge delta wings are of interest for supersonic aircraft and have been the subject of theoretical and experimental studies for many years in both the subsonic and supersonic speed ranges. Of particular interest at subsonic speeds has been the formation and influence of the leading-edge separation vor­ tex that occurs on wings having sharp, highly swept leading edges.
    [Show full text]
  • Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles
    Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles A project presented to The Faculty of the Department of Aerospace Engineering San Jose State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Simon H.B. Sorensen March 2019 approved by Dr. Periklis Papadopoulous Faculty Advisor 1 i ABSTRACT With the advancement of technology in space, reusable re-entry space planes have become a focus point with their ability to save materials and utilize existing flight data. Their ability to not only supply materials to space stations or deploy satellites, but also in atmosphere flight makes them versatile in their deployment and recovery. The existing design of vehicles such as the Space Shuttle Orbiter and X-37 Orbital Test Vehicle can be used to observe the effects of scaling existing vehicle geometry and how it would operate in identical conditions to the full-size vehicle. These scaled vehicles, if viable, would provide additional options depending on mission parameters without losing the advantages of reusable re-entry space planes. 2 Table of Contents Abstract . i Nomenclature . .1 1. Introduction. .1 2. Literature Review. 2 2.1 Space Shuttle Orbiter. 2 2.2 X-37 Orbital Test Vehicle. 3 3. Assumptions & Equations. 3 3.1 Assumptions. 3 3.2 Equations to Solve. 4 4. Methodology. 5 5. Base Sized Vehicles. 5 5.1 Space Shuttle Orbiter. 5 5.2 X-37. 9 6. Scaled Vehicles. 11 7. Simulations. 12 7.1 Initial Conditions. 12 7.2 Initial Test Utilizing X-37. .13 7.3 X-37 OTV.
    [Show full text]
  • Lift for a Finite Wing
    Lift for a Finite Wing • all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced at the wing tips of the finite wing, which trail downstream. These vortices are analogous to mini-tornadoes, and like a tornado, they reach out in the flow field and induce changes in the velocity and pressure fields around the wing Imagine that you are standing on top of the wing you will feel a downward component of velocity over the span of the wing, induced by the vortices trailing downstream from both tips. This downward component of velocity is called downwash. The local downwash at your location combines with the free-stream relative wind to produce a local relative wind. This local relative wind is inclined below the free- stream direction through the induced angle of attack α i . Hence, you are effectively feeling an angle of attack different from the actual geometric angle of attack of the wing relative to the free stream; you are sensing a smaller angle of attack. For Example if the wing is at a geometric angle of attack of 5°, you are feeling an effective angle of attack which is smaller. Hence, the lift coefficient for the wing is going to be smaller than the lift coefficient for the airfoil. This explains the answer given to the question posed earlier. High-Aspect-Ratio Straight Wing The classic theory for such wings was worked out by Prandtl during World War I and is called Prandtl's lifting line theory.
    [Show full text]
  • Human Powered Hydrofoil Design & Analytic Wing Optimization
    Human Powered Hydrofoil Design & Analytic Wing Optimization Andy Gunkler and Dr. C. Mark Archibald Grove City College Grove City, PA 16127 Email: [email protected] Abstract – Human powered hydrofoil watercraft can have marked performance advantages over displacement-hull craft, but pose significant engineering challenges. The focus of this hydrofoil independent research project was two-fold. First of all, a general vehicle configuration was developed. Secondly, a thorough optimization process was developed for designing lifting foils that are highly efficient over a wide range of speeds. Given a well-defined set of design specifications, such as vehicle weight and desired top speed, an optimal horizontal, non-surface- piercing wing can be engineered. Design variables include foil span, area, planform shape, and airfoil cross section. The optimization begins with analytical expressions of hydrodynamic characteristics such as lift, profile drag, induced drag, surface wave drag, and interference drag. Research of optimization processes developed in the past illuminated instances in which coefficients of lift and drag were assumed to be constant. These shortcuts, made presumably for the sake of simplicity, lead to grossly erroneous regions of calculated drag. The optimization process developed for this study more accurately computes profile drag forces by making use of a variable coefficient of drag which, was found to be a function of the characteristic Reynolds number, required coefficient of lift, and airfoil section. At the desired cruising speed, total drag is minimized while lift is maximized. Next, a strength and rigidity analysis of the foil eliminates designs for which the hydrodynamic parameters produce structurally unsound wings. Incorporating constraints on minimum takeoff speed and power required to stay foil-borne isolates a set of optimized design parameters.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • CFD Simulations of Flow Over Airfoils: an Analysis of Wind Turbine Blade Aerodynamics
    CFD Simulations of Flow over Airfoils: An Analysis of Wind Turbine Blade Aerodynamics By: John Hamilla, Mechanical Engineering Advisor: Maria-Isabel Carnasciali, Ph.D. Abstract Wind turbines are rapidly becoming a hot topic when faced with today’s sustainable energy challenges. As such, attention needs to be turned to analyzing the flow over such structures. Computational Fluid Dynamics (CFD) software was used to study the flow fields surrounding fixed airfoils. The simulations provided data on how air flows past various blade shapes. With more realistic simulations, progress can be made on evaluating unique designs. Introduction turbines are lift devices, as opposed to drag devices. Drag devices rely on the wind to push parts. This is Wind turbines are becoming an increasingly popular relatively inefficient. Lift devices instead use airfoils. solution to generate clean, sustainable, power. This The rotors of this type of wind turbine are shaped to emerging technology was the underlying focus of this create lift as wind flows past. A component of the study. generated lift creates a torque on the blade which causes them to rotate around an axis. With this setup, More specifically, this study aimed at gaining an the rotational speed of the blade can surpass that of understanding of the flow fields around a wind the wind (Wind Energy). turbine structure. Computational Fluid Dynamics (CFD) software was used to simulate air flow past two distinct shapes. Given the flow fields, one could visualize the effects particular shapes have on the air stream. The air flow gives rise to lift and drag forces on the airfoils.
    [Show full text]
  • 04 Delta Wings
    ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment.
    [Show full text]
  • Wingtip Vortices and Free Shear Layer Interaction in The
    WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Muhammad Omar Memon, M.S. UNIVERSITY OF DAYTON Dayton, Ohio May, 2017 WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Name: Memon, Muhammad Omar APPROVED BY: _______________________ _______________________ Aaron Altman Markus Rumpfkeil Advisory Committee Chairman Committee Member Professor; Director, Graduate Aerospace Program Associate Professor Mechanical and Aerospace Engineering Mechanical and Aerospace Engineering _______________________ _______________________ Jose Camberos Wiebke S. Diestelkamp Committee Member Committee Member Adjunct Professor Professor & Chair Mechanical and Aerospace Engineering Department of Mathematics _______________________ _______________________ Robert J. Wilkens, PhD., P.E. Eddy M. Rojas, PhD., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Muhammad Omar Memon All rights reserved 2017 iii ABSTRACT WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Name: Memon, Muhammad Omar University of Dayton Advisor: Dr. Aaron Altman Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex.
    [Show full text]
  • New Theory of Flight
    New Theory of Flight Johan Hoffman,∗ Johan Janssonyand Claes Johnsonz March 28, 2014 Abstract We present a new mathematical theory explaining the fluid mechanics of sub- sonic flight, which is fundamentally different from the existing boundary layer- circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new the- ory is based on our new resolution of d’Alembert’s paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of po- tential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15 − 20 for a small propeller plane at cruising speed with Reynolds number Re ≈ 107 and a jumbojet at take-off and landing with Re ≈ 108, which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solu- tions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for Re > 106, in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration. 1 Overview of new theory of flight We present a new theory of flight of airplanes based on computational solution and mathematical analysis of the incompressible Navier-Stokes equations with Reynolds numbers in the range 106 − 108 of relevance for small to large airplanes including gliders.
    [Show full text]