The Quest for Longitude
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Maritime Navigation Unit Plan
EARLY MARITIME NAVIGATION UNIT PLAN Compelling How did advances in marine navigation, from the 13th century C.E. through the 18th century Question C.E., help to catapult Western Europe into global preeminence? C3 Historical Thinking Standards – D2.His.1.9-12. Evaluate how historical events and developments were shaped by unique circumstances of time and place as well as broader historical contexts. Standards C3 Historical Thinking Standards – D2.His.2.9-12. and Analyze change and continuity in historical eras. Practices Common Core Content Standards – CCSS.ELA-LITERACY.WHST.9-10.1.B Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience's knowledge level and concerns. Staging the How do advances in marine navigation technology help nations develop and sustain world Question influence? Supporting Supporting Supporting Supporting Question 1 Question 2 Question 3 Question 4 Why has the sea been What is navigation and How does being posed How did STEM confer crucial to the fate of what special challenges with a challenge lead us to advantages to a society’s nations, empires, and does the sea pose to innovation and progress? ability to navigate the civilizations? travelers? world’s oceans? Formative Formative Formative Formative Performance Task 1 Performance Task 2 Performance Task 3 Performance Task 4 1) Look at the planet’s 1) In pairs ask your 1) Compass Lesson Plan 1) Drawing connections to physical geography, partner to draw you a (Lesson is located below the last three questions, all the Print Documents) build an argument that map from school to a view the Longitude video the sea was better at specific location in your Discover how the (07:05 min) connecting cultures town. -
Cambridge University Press 978-0-521-76518-3 — the Making of the Modern Admiralty C
Cambridge University Press 978-0-521-76518-3 — The Making of the Modern Admiralty C. I. Hamilton Index More Information Index Accountant-General, 60; of the Navy Arbuthnot, Charles, 97–8 (from 1832): 65, 125, 138, 146, Army Staff, 222 189–93, 295 (see also estimates); Arnold-Forster, H. O., 198, 217 staff, 164, 188, 192 Asquith, H. H., 224 administrative board, 31 Assistant Secretary for Finance Duties Admiralty (see also Admiralty Office; (see also Secretariat), 192 Board of Admiralty; Childers, H. C. E.; Aube, H.-L.-T., 172 First and Second (Permanent) Auckland, George Eden, Earl of, 119, 134 Secretaries; Geddes, E.; Goschen, Awdry, Richard, 191, 201, 205 George; Graham, Sir James; ‘mob from the North’; Naval Staff; Navy Bacon, Sir Reginald, (Kt. 1916), 215 Board; Navy Pay Office; Principal Baddeley, Vincent, (Kt. 1921), 205, 206, 259 Officers; Private Office; Victualling Balfour, A. J., 237, 238 Board; Secretariat; Sick and Hurt Ballard, G. A., 222, 223 Office; Sixpenny Office; Transport Bank of England, 28 Office; War Staff): administration/ Barham, Lord, see Middleton, Charles policy divide, 266–7, 275, 279, 288, Barnaby, Nathaniel (Kt. 1885), 136, 162, 307; attacks on, 312; civil–military 173, 194–5 division in (see also Godfrey, John), Barrow, John (cr. baronet, 1835) (see also 68–9, 279, 289, 297–302, 313, 314; Second Secretary): 6, 12, 52, 57, 63; committees, 110–11, 120–3, 186–9, administration and policy of, 41, 51, 215; communications, 176, 220, 64, 68–9, 75, 93, 100–1, 103, 152, 248–50; demobilisation, 274, 276; 163; and Benthamism, 54; and development, 2–3, 23, 234–6; J. -
Memoirs of Hydrography
MEMOIRS 07 HYDROGRAPHY INCLUDING Brief Biographies of the Principal Officers who have Served in H.M. NAVAL SURVEYING SERVICE BETWEEN THE YEARS 1750 and 1885 COMPILED BY COMMANDER L. S. DAWSON, R.N. I 1s t tw o PARTS. P a r t II.—1830 t o 1885. EASTBOURNE: HENRY W. KEAY, THE “ IMPERIAL LIBRARY.” iI i / PREF A CE. N the compilation of Part II. of the Memoirs of Hydrography, the endeavour has been to give the services of the many excellent surveying I officers of the late Indian Navy, equal prominence with those of the Royal Navy. Except in the geographical abridgment, under the heading of “ Progress of Martne Surveys” attached to the Memoirs of the various Hydrographers, the personal services of officers still on the Active List, and employed in the surveying service of the Royal Navy, have not been alluded to ; thereby the lines of official etiquette will not have been over-stepped. L. S. D. January , 1885. CONTENTS OF PART II ♦ CHAPTER I. Beaufort, Progress 1829 to 1854, Fitzroy, Belcher, Graves, Raper, Blackwood, Barrai, Arlett, Frazer, Owen Stanley, J. L. Stokes, Sulivan, Berard, Collinson, Lloyd, Otter, Kellett, La Place, Schubert, Haines,' Nolloth, Brock, Spratt, C. G. Robinson, Sheringham, Williams, Becher, Bate, Church, Powell, E. J. Bedford, Elwon, Ethersey, Carless, G. A. Bedford, James Wood, Wolfe, Balleny, Wilkes, W. Allen, Maury, Miles, Mooney, R. B. Beechey, P. Shortland, Yule, Lord, Burdwood, Dayman, Drury, Barrow, Christopher, John Wood, Harding, Kortright, Johnson, Du Petit Thouars, Lawrance, Klint, W. Smyth, Dunsterville, Cox, F. W. L. Thomas, Biddlecombe, Gordon, Bird Allen, Curtis, Edye, F. -
Lunar Distances Final
A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem. -
Save Our Ships! Navigation on the High Seas
Save Our Ships! Navigation on the High Seas Introduction Navigation is determining where you are and how to get where you're going. Navigation tools help you travel from one place to another efficiently and safely. Early sea navigation depended upon a mariner's ability to determine latitude by observing the height of the sun in daylight and the North Star and major constellations at night. Such observations were not exact and could be unreliable. Beginning in the 13th century, advancements in navigational tools and scientific methods made navigation more exact and travel by ship safer; however, by the early 18th century, ships still lost their way frequently, with sometimes disastrous results. In this problem- based lesson, students read about the Scilly disaster of 1707, determine its causes, and then choose and explain which navigational tools might have prevented the disaster. Objectives In this lesson, students: • identify the cause(s) of the Scilly naval disaster of 1707 • place the development of navigational tools in chronological order • problem-solve to figure out what navigational tools could have prevented the Scilly disaster • use their knowledge of navigational tools to answer the question “How did mariners use navigational tools to solve the challenges of early oceanic travel?” Materials • Navigational Tools Graphic Organizer • Scilly Naval Disaster of 1707 • Timeline of the Development of Navigational Tools • Navigational Tools Cards • scissors • tape © 2015 The Colonial  ƒoundation 1 Save Our Ships! Navigation on the High Seas Strategy 1. Ask students to think about the kinds of tools we have today to help us find our way when traveling. -
SHOVELL and the LONGITUDE How the Death of Crayford’S Famous Admiral Shaped the Modern World
SHOVELL AND THE LONGITUDE How the death of Crayford’s famous admiral shaped the modern world Written by Peter Daniel With Illustrations by Michael Foreman Contents 1 A Forgotten Hero 15 Ships Boy 21 South American Adventure 27 Midshipman Shovell 33 Fame at Tripoli 39 Captain 42 The Glorious Revolution 44 Gunnery on the Edgar 48 William of Orange and the Troubles of Northern Ireland 53 Cape Barfleur The Five Days Battle 19-23 May 1692 56 Shovell comes to Crayford 60 A Favourite of Queen Anne 65 Rear Admiral of England 67 The Wreck of the Association 74 Timeline: Sir Cloudsley Shovell 76 The Longitude Problem 78 The Lunar Distance Method 79 The Timekeeper Method 86 The Discovery of the Association Wreck 90 Education Activities 91 Writing a Newspaper Article 96 Design a Coat of Arms 99 Latitude & Longitude 102 Playwriting www.shovell1714.crayfordhistory.co.uk Introduction July 8th 2014 marks the tercentenary of the Longitude Act (1714) that established a prize for whoever could identify an accurate method for sailors to calculate their longitude. Crayford Town Archive thus have a wonderful opportunity to tell the story of Sir Cloudesley Shovell, Lord of the Manor of Crayford and Rear Admiral of England, whose death aboard his flagship Association in 1707 instigated this act. Shovell, of humble birth, entered the navy as a boy (1662) and came to national prominence in the wars against the Barbary pirates. Detested by Pepys, hated by James II, Shovell became the finest seaman of Queen Anne’s age. In 1695 he moved to Crayford after becoming the local M.P. -
Some Board of Longitude Instruments in the Nineteenth Century
SOME BOARD OF LONGITUDE INSTRUMENTS IN THE NINETEENTH CENTURY A.N. STIMSON National Maritime Museum, Greenwich, London A series of calamitous British disasters at sea occurred at the turn of the 17th century, many of which can be attributed to poor navigation compounded by inability to find longitude. Perhaps the most momentous was that of Sir Cloudsley Shovel's returning Mediterranean Squadron which was comprehensively wrecked on the Scilly Islands in 1707 with the loss of four large warships and nearly 2000 men.1 An increasing public outcry at this regular loss of life and keenly felt loss of trade revenue resulted in an Act of Parliament which was intended to improve the inadequate state of navigation by stimulating an answer to the seemingly impossible problem of finding longitude at sea. On 20th July, 1714 Queen Anne gave her assent to "A Bill for Providing a Public Reward for such Person or Persons as shall Discover the Longitude at Sea". £ 20,000, an enormous sum of money at that time, was to be awarded to anyone who could provide a practical solution of general utility which would enable a navigator to find his ship's position to within twenty geographical miles. Lesser sums were to be awarded for methods which produced less accurate results.2 To oversee the management of these awards and to judge the prac- ticability of the solutions proposed, the Act provided for a Board of Commissioners. This was composed of the best scientific and seafaring minds of the day in addition to the inevitable political appointments. -
John Couch Adams: Mathematical Astronomer, College Friend Of
John Couch Adams: mathematical astronomer, rsta.royalsocietypublishing.org college friend of George Gabriel Stokes and promotor Research of women in astronomy Davor Krajnovic´1 Article submitted to journal 1Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany Subject Areas: xxxxx, xxxxx, xxxx John Couch Adams predicted the location of Neptune in the sky, calculated the expectation of the change in Keywords: the mean motion of the Moon due to the Earth’s pull, xxxx, xxxx, xxxx and determined the origin and the orbit of the Leonids meteor shower which had puzzled astronomers for almost a thousand years. With his achievements Author for correspondence: Adams can be compared with his good friend George Davor Krajnovic´ Stokes. Not only were they born in the same year, e-mail: [email protected] but were also both senior wranglers, received the Smith’s Prizes and Copley medals, lived, thought and researched at Pembroke College, and shared an appreciation of Newton. On the other hand, Adams’ prediction of Neptune’s location had absolutely no influence on its discovery in Berlin. His lunar theory did not offer a physical explanation for the Moon’s motion. The origin of the Leonids was explained by others before him. Adams refused a knighthood and an appointment as Astronomer Royal. He was reluctant and slow to publish, but loved to derive the values of logarithms to 263 decimal places. The maths and calculations at which he so excelled mark one of the high points of celestial mechanics, but are rarely taught nowadays in undergraduate courses. -
1908 September
THE ROYAL ENGINEERS JO UIRNAL Vol. Vii. No. 3 SEPTEMBER, 1908. OONTENTS. PAOa 1. Studies on the Use of Field Telegraphs in South Afrie. By GODFREY-FAussETT, R.E. (With Major E. G. Plates) ... .. .. 2. Description of a Ferro-Concrete . 37 Bridge in the Britiah Infantry Lines Ahmednagar. By Major A. H. D. RILCH, at R.E ... ... ... I43 3. Dore Bridge. By Col. G. K. SCOTT-MONCRIEFF, C.B., C.I E., R.E. (With Pto) 14 4. Water Supply Companies. By Capt. P. H. FRENCH, R.E. 53 5. DemolUtion of aChimney. By Lieut. D. OGILVY, R.E . "... 6. An Improved Method of Signalling. By Major A. H. D. RIACH, R.E. -157 7. The Maps of Glareanus. By Major-Gen. E. RENOUARD JAMES, late RE. (With P.at) ... ... .. 159 8. The SM.E. Workshops. By Lt.-Col. B. R WARD, R.E. ... 9 9. Transeripts -. 6 :--Organization of the Military Engineers Boltin in France. (Translated from the del/.Jinisteria e Guerra y Marina by 'M.')... The ... 173 Use of Sandbags as Cover in the Attack. Milleilunten ieber (Translated from the Cegensta'nde des Ariilleriti-end Geniaesens by the General Staff, W.O.) ... ... 180 10. Review:-Field Engineering in Von Lobell's Annual for 19o7. (' E.') . ... 183 11. Notice of Magazine ....... * 18 12. Recent Publications of Military Interest ... ' " . ..* · . - ... 18987 j HAWKES & CO., LTD., CAP AND ACCOUTREMENT TAILORS AND MILITARY OUTFITTERS, MANUFACTURERS, LONDON. Ia.Il PICCADILLY, Engingers. Patronized by many Officers of ths Royal G. E. CARRINGTON, For many years Master Tailor, Royal Engineers, TAILOR &MILITARY OUTFITTER, 53, HIGH STREET, OLD BROMPTON, KENT. -
(2015) Log Books and the Law of Storms: Maritime Meteorology and the British Admiralty in the Nineteenth Century
Naylor, S. (2015) Log books and the law of storms: maritime meteorology and the British Admiralty in the Nineteenth Century. Isis, 106(4), pp. 771-797. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/107685/ Deposited on: 30 June 2015 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Log Books and the Law of Storms: Maritime Meteorology and the British Admiralty in the Nineteenth Century By Simon Naylor1 Abstract This paper contributes to debates about the relationship between science and the military by examining the British Admiralty’s participation in meteorological projects in the first half of the nineteenth century. It focuses on attempts to transform Royal Naval log books into standardized meteorological registers that would be of use to both science and the state. The paper begins with a discussion of Admiralty Hydrographer, Francis Beaufort, who promoted the use of standardized systems for the observation of the weather at sea. It then examines the application of ships’ logs to the science of storms. The paper focuses on the Army Engineer, William Reid, who studied hurricanes while stationed in Barbados and Bermuda. Reid was instrumental in persuading the Admiralty to implement a naval meteorological policy, something the Admiralty Hydrographer had struggled to achieve. The paper uses the reception and adoption of work on storms at sea to reflect on the means and ends of maritime meteorology in the mid-nineteenth century. -
Longitude Prize
Explorations in Economic History 64 (2017) 21–36 Contents lists available at ScienceDirect Explorations in Economic History journal homepage: www.elsevier.com/locate/eeh ☆ Prizes, patents and the search for longitude MARK ⁎ M. Diane Burtona, Tom Nicholasb, a ILR School, Cornell University, 170 Ives Hall, Ithaca, NY 14853, USA b Harvard Business School, Soldiers Field Road, Boston, MA 02163, USA ARTICLE INFO ABSTRACT Keywords: The 1714 Longitude Act created the Board of Longitude to administer a large monetary prize and Prizes progress payments for the precise determination of a ship's longitude. However, the prize did not Patents prohibit patenting. We use a new dataset of marine chronometer inventors to show that the Innovation propensity to patent was high. We argue that while the prize spurred entry by key inventors, and progress payments facilitated research investment in an area of significant social value, patents promoted disclosure. Our findings highlight the importance of complementarities between prize and patent-based incentives in the design of innovation inducement contests. 1. Introduction In response to a prominent navigation disaster and growing demand for a solution to the problem of identifying a ship's position at sea, a 1714 British Act of Parliament created a substantial award for the precise determination of longitude.1 Using a prize of up to £20,000 (around £2.5 million today) a commission of adjudicating experts (the Board of Longitude) and resources for inventors to engage in experimentation, the government aimed to encourage knowledge accumulation in an area of high social value but relatively low private investment. By the early 1770s following a long and acrimonious dispute with the Board of Longitude, John Harrison (1693–1776), an English clockmaker, was awarded monetary values approximately equivalent to the prize.2 Mokyr (2010, p. -
DAVA SOBEL Contents
LONGITUDE The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time DAVA SOBEL Contents 1. Imaginary Lines 2. The Sea Before Time 3. Adrift in a Clockwork Universe 4. Time in a Bottle 5. Powder of Sympathy 6. The Prize 7. Cogmaker’s Journal 8. The Grasshopper Goes to Sea 9. Hands on Heaven’s Clock 10. The Diamond Timekeeper 11. Trial by Fire and Water 12. A Tale of Two Portraits 13. The Second Voyage of Captain James Cook 14. The Mass Production of Genius 15. In the Meridian Courtyard Acknowledgments Sources For my mother, Betty Gruber Sobel, a four-star navigator who can sail by the heavens but always drives by way of Canarsie. 1. Imaginary Lines When I’m playful I use the meridians of longitude and parallels of latitude for a seine, drag the Atlantic Ocean for whales. —MARK TWAIN, Life on the Mississippi Once on a Wednesday excursion when I was a little girl, my father bought me a beaded wire ball that I loved. At a touch, I could collapse the toy into a flat coil between my palms, or pop it open to make a hollow sphere. Rounded out, it resembled a tiny Earth, because its hinged wires traced the same pattern of intersecting circles that I had seen on the globe in my schoolroom— the thin black lines of latitude and longitude. The few colored beads slid along the wire paths haphazardly, like ships on the high seas. My father strode up Fifth Avenue to Rockefeller Center with me on his shoulders, and we stopped to stare at the statue of Atlas, carrying Heaven and Earth on his.