Lecture Outline Processing Fiber Into Yarn I

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Outline Processing Fiber Into Yarn I LECTURE OUTLINE PROCESSING FIBER INTO YARN I. The History of Fiber Processing 11. Material Opening and Cleaning A. Preparing the bale lay-down 1. Selection of bales 2. Bale arrangement for blending 3. Removal of bands and bagging B. Opening and cleaning equipment 1. Weigh-pan feeders 2. Magnetic and electronic cleaners 3. Dust removers 4. Beater type cleaners 5. Positive-fed saw-type cleaners 111. Carding A. Opening of fiber B. Cleaning as a hction C. Reducing or drafting D. Packaging of stock IV. Drawing A. Drafting and fiber orientation B. Blending and uniformity V. Combing A. Combing preparation 1. Drawing for Iapper 2. Lapping B. Principles of combing operation I. Feeding of laps 2. Nipping of fiber 3. Circular combing 4. Detaching 5. Top combing V. Combing (continued) C. Primary functions 1. Removal of short fiber (noils) 2. Removal of trash D. Secondary functions 1. Reducing and drafting 2. Blending and packaging VI. Roving A. Definition and description of machine B. Description of product C. Purpose of roving machine 1. Drafting 2. Twisting 3. Packaging a. laying b. winding c. building VII. Types of Spinning A. Intermittent spinning 1. Hand Spinning 2. Saxony Wheel-Spinning Jenny B. Continuous spinning 1. Cap spinning 2. Centrifugal spinning 3. Flyer spinning 4. Ring spinning a. definition and description of process 1. drafting of fibers 2. twisting of yarn 3. packagmg of yarn aa. laying bb. winding cc. package building b. other ring spinning factors 1. ring and traveler 2. speeds and rpms C. Open-end spinning 1. Definition and methods a. pneumatic-Murata Air Jet b. friction-DREF I, 11, III c. aero-mechanical-rotor 2. Rotor spinning a. feed assembly b. drafting c. transporting d. condensing e. twisting f. packaging g. other aspects affecting rotor spinning 1. opening roller type and speed 2. rotor type and speed 3. navel surfaces and false twist devices 4. trash extraction 5. component wear THE HISTORY OF FIBER PROCESSING The art of spinning yarn from fibers is so old that it antedates recorded history. From artifacts that have been discovered, it is evident that a form of cloth woven fiom fibers was used by cavemen while the mammoth, the giant sloth and the saber-tooth tiger roamed the earth during the Stone Age. Ancient Egyptian hieroglyphics picture men and women engaged in spinning and weaving. Cloth made of spun yarn so fine that it cannot be duplicated by modem machines and processes have been unearthed from the tombs of the Pharaohs of 6,000 years ago. The earliest known method of spinning was by drafting the fibers by hand and winding them on a distaff or rod. Hand spindles have been found among the excavated ruins of ancient civilizations in many parts of the world. Spinning is not the discovery or invention of any one man or era. Rather, it is the accumulated howledge and technological advances of myriad people through thousands of years of striving for better ways to obtain the necessities of everyday living. The evolution of spinning from a home-based handicraft to a mass production industry has been within the last two centuries. Fairly accurate records of the development in spinning during what is often called the Machine Age are available, but details of some of the early machines are sadly lacking. The invention of the Saxony Wheel by Johann Jurgen of ~runswick,'Germanyduring the latter part of the sixteenth century was the first break-through in the mechanization of spinning. The Spinning Jenny, invented by James Hargreaves in 1764, was actually a modification of the Saxony Wheel with a number of spindles. James Wyatt is credited with the invention of drafting with rolls, and he built a spinning machine as early as 1730. Lewis Paul worked with Wyatt and patented a spinning machine in 1738, and another in 1758. However, these first machines were not successful due to the lack of intermediate processes to prepare the fibers for final drafting. Thomas Highs claimed credit for the invention of both roller spinning and the Spinning Jenny and won a court suit against Richard Arkwright, who held a number of patents on these developments. However, there had always been some doubt about the authenticity of High's claims. Richard Arkwright is given credit for developing the first successful machines for manufacturing spun yam. He patented a spinning machine in 1769. Finding that preparatory processing was needed for the fibers, he developed and patented carding, drawing, roving, and spinning machines in 1775. Samuel Crompton invented the Spinning Mule, a cross between the Jenny and the Jack, or water frame, in 1779. The water frame was so called because the first models were pulled by water- power. Christopher Tully is given credit for building the first spinning machine in America. This machine, a Spinning Jenny, was placed in the mill of Samuel Wetherill in Philadelphia, Pennsylvania in 1775. Although he was not the first to manufacture yarn with machines in America, Samuel Slater was the first to build and use machinery based on the Arkwright system. These machines were built from memory (before coming to America, Slater had worked eight years for Jerediah Strut7 a partner of Richard Arkwright) and there is no record of Slater actually inventing any of them. However, there is no doubt that by Sam Slater equipping his mill at Pawtucket, Rhode Island with successful textile machines in 1793, it was one of the greatest stimulants to the invention and enterprise in making the United States a world leader in both textile manufacturing and machinery building. Paul Moody, superintendent of the Boston Manufacturing Company mill at Waltham, Massachusetts, invented the filling throstle in 1819 and eliminated the costly winding process of transfening the filling yarn to filling bobbins. It was in the basement machine shop of this mill at Watharn, founded by Francis Cabot Lowell in 1813, that the present-day Saco Lowell Shops had their beginning. Moody invented the dead spindle system of thostle spinning in 1821, which was predominated in Northern New England until after the Civil War. Two notable spinning inventions of this era were cap spinning, patented by Charles Danforth in1 828 and ring spinning, developed by John Thorp in 1830. Ring spinning gradually became the predominate spinning system throughout the world, especially on cotton stock.' 1. Platt Saco Lowell, Instruction Manual S~inomaticS~inning Frame, Fifth Edition, pp. 8- 11. GLOSSARY OF SHORT STAPLE PROCESSING TERMS (In Order of Occurrence) Blending: The technique of mixing two or more dissimilar fibers in a very uniform mixture. Can be done prior to carding or at the drawfhme. Opening: A preliminary operation in staple fiber processing that separates compressed masses of fiber into loose turfs and removes heavier impurities. Cleaning: Separating the non-lint £tom the lint. Carding: The disentanglement of fibers by working them between two closely spaced, relatively moving surfaces clothed with wire, pin, or saw teeth. Sliver: As assemblage of fibers in rope fom without twist, produced at carding, drawing, and combing. Drahg: The process of attenuating raw stock, sliver, and roving to reduce their mass per unit length. Drawing: Textile operations by which a number of slivers are blended (doubled) into a single sliver and made more uniform by drafting and by parallelizing the fibers. Doublings: A number of laps, slivers, or rovings feh simultaneously into a machine for drafting into a single strand usually to promote regularity and homogeneity of a product at each stage of processing. Lapping: Combining a number of slivers together in lap form for combing preparation. Combing: The straightening and parallelizing of fibers to remove short fibers and impurities by using a comb, or combs, assisted by brushes and rollers and sometimes by knives. Roving: Intermediate state between sliver and ring spinning where the sliver is condensed and a small amount of twist is added for stability. Spinning-Ring: A type of spinning incorporating ring and traveler in which, on leaving the delivery rollers, the yam passes through a guide arranged centrally above the top of the spindle, down and through a traveler positioned on the ring and onto a driven yam package which sits on the spindle. Spinning-Open End: The production of spun yarns by a process in which the sliver or roving is opened or separated to its individual fibers or tufts and is subsequently reassembled in the spinning element to form a yam. Winding: Process of transferring yam from one type of package to another, more suitable, package for subsequent processing. Necessary in ring spinning to transfer yam from bobbins to cones. Clearing Yam: The process of removing imperfections such as slubs, neps, or projecting impurities from the body of a yam. Plied Yams: Yams made by twisting two or more strands of single yam together. Outline of Short Staple Processing (through yarn production) HunterWe6h Pan Hopper Feeders Dust Remover -Condenser r AMH Blender 1 Rieter Aemfeed Carding Rieter C-4 Card Trashmaster Piatt Saw Lowell DE-7C Drawframe lC3Rieter E7/6 Comber Rieter RSB851 Drawframe Saw Lowell Rovematic FC-1 B Roving Frame I Ring Spinning Leesona Unconer Wnder Non-ring Sphning OE-Rotor Spinning Whitin Roberts Ring Twister Fabric Formation: Weaving or Knitting MATERIAL OPENING AND CLEANING When a bale of cotton arrives at a textile plant, it is tightly compressed and usually has a density of around 28 to 30 pounds/cubic foot. Cotton is usually shipped in weights of 480 pounds per bale, whereas man-made fibers are shipped in weights of 600 to 700 pounds per bale. Here again, this is compressed tightly, which is a practical necessity for shipment.
Recommended publications
  • CURRICULUM(CBCS) TEXTILE ENGINEERING (3 to 8 Semester)
    Himachal Pradesh Technical University, Hamirpur (H.P.) CURRICULUM(CBCS) TEXTILE ENGINEERING rd th (3 to 8 Semester) Teaching and Examination Scheme 1 HIMACHAL PRADESH TECHNICAL UNIVERSITY, HAMIRPUR CURRICULUM OF B.TECH TEXTILE ENGINEERING 1. Credit System: A system enabling quantification of course work, with one credit being assigned to each unit after a student completes its teaching-learning process, followed by passing in both Continuous Internal Assessment CIA & Semester End Examination (SEE); Further, Choice Based Credit System (CBCS) to be helpful in customizing the course work for a student, through Core &Electives. 2. Credit Courses: All Courses registered by a student in a Semester is to earn credits. In a widely accepted definition, students to earn One Credit by registering and passing: One hour/week/Semester for Theory/Lecture (L) Courses; and, Two hours/week/Semester for Laboratory/Practical (P) Courses or Tutorials (T). NOTE: Other student activities not demanding intellectual work or enabling proper assessment like, practical training, study tour and guest lecture not to carry Credits. 3. Credit Representation: Credit values for different courses is as given in Table 1: Lectures Tutorials Practical Work Credits Total (hrs./wk./Sem.) (hrs./wk./Sem.) (hrs./wk./Sem.) (L: T: P/D) Credits 3 0 0 3:0:0 3 2 2 0 2:1:0 3 2 0 2 2:0:1 3 2 2 2 2:1:1 4 0 0 6 0:0:3 3 4.Course Load: Every student to register for a set of Courses in each Semester, with the total number of their Credits being limited by considering the permissible weeklyContactHours (typically: 30/Week); For this, an average Course Load of 24Credits/Semester (e.g., 6-7 Courses) is generally acceptable.
    [Show full text]
  • Diary of William Owen from November 10, 1824 to April 20, 1825 Ed. by Joel W
    Library of Congress Diary of William Owen from November 10, 1824 to April 20, 1825 ed. by Joel W. Hiatt. INDIANA HISTORICAL SOCIETY PUBLICATIONS. VOLUME IV. NUMBER 1. DIARY OF WILLIAM OWEN From November 10, 1824, to April 20, 1825 EDITED BY JOEL W. HIATT LC INDIANAPOLIS: THE BOBBS-MERRILL COMPANY. 1906. 601 25 Pat 14 F521 .I41 114026 08 iii PREFACE. 3 456 Part 2 8 The manuscript of this diary of William Owen has remained in the hands of his only daughter—formerly Mary Francis Owen, now Mrs. Joel W. Hiatt—for many years and its existence, save to a few, has been unknown. It is fragmentary in form. It is possibly the close of a journal which had been kept for years before. Its first sentence in the original is an incomplete one, showing that there was an antecedent portion. The picture of the times is so graphic than the Indiana Historical Society publishes it, on account of its historical value. Mr. Owen was 22 years old at the time of its composition. Diary of William Owen from November 10, 1824 to April 20, 1825 ed. by Joel W. Hiatt. http://www.loc.gov/resource/lhbtn.14024 Library of Congress William Owen was the second of four sons born to Robert and Ann Caroline Owen, of Scotland. Their names were Robert Dale, William, David Dale, and Richard. Three of them, Robert Dale, David Dale and Richard are known where ever the sun shines on the world of literature or science. William, who, because of habit or for his own amusement, wrote this diary is not known to fame.
    [Show full text]
  • All Hands Are Enjoined to Spin : Textile Production in Seventeenth-Century Massachusetts." (1996)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1996 All hands are enjoined to spin : textile production in seventeenth- century Massachusetts. Susan M. Ouellette University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Ouellette, Susan M., "All hands are enjoined to spin : textile production in seventeenth-century Massachusetts." (1996). Doctoral Dissertations 1896 - February 2014. 1224. https://scholarworks.umass.edu/dissertations_1/1224 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. UMASS/AMHERST c c: 315DLDb0133T[] i !3 ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS A Dissertation Presented by SUSAN M. OUELLETTE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY February 1996 History ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS A Dissertation Presented by SUSAN M. OUELLETTE Approved as to style and content by: So Barry/ J . Levy^/ Chair c konJL WI_ Xa LaaAj Gerald McFarland, Member Neal Salisbury, Member Patricia Warner, Member Bruce Laurie, Department Head History (^Copyright by Susan Poland Ouellette 1996 All Rights Reserved ABSTRACT ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS FEBRUARY 1996 SUSAN M. OUELLETTE, B.A., STATE UNIVERSITY OF NEW YORK PLATTSBURGH M.A., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Barry J.
    [Show full text]
  • NBER WORKING PAPER SERIES PATH DEPENDENCE and the ORIGINS of COTTON TEXTILE MANUFACTURING in NEW ENGLAND Joshua L. Rosenbloom Wo
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics NBER WORKING PAPER SERIES PATH DEPENDENCE AND THE ORIGINS OF COTTON TEXTILE MANUFACTURING IN NEW ENGLAND Joshua L. Rosenbloom Working Paper 9182 http://www.nber.org/papers/w9182 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2002 I thank Gavin Wright for his comments on an earlier version of this paper and Peter Temin and Doug Irwin for making available to me their data on cotton textile production and tariffs. The views expressed herein are those of the author and not necessarily those of the National Bureau of Economic Research. © 2002 by Joshua L. Rosenbloom. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Path Dependence and the Origins of Cotton Textile Manufacturing in New England Joshua L. Rosenbloom NBER Working Paper No. 9182 September 2002 JEL No. N6, N4 ABSTRACT During the first half of the nineteenth century the United States emerged as a major producer of cotton textiles. This paper argues that the expansion of domestic textile production is best understood as a path-dependent process that was initiated by the protection provided by the Embargo Act of 1807 and the War of 1812. This initial period of protection ended abruptly in 1815 with the conclusion of the war and the resumption of British imports, but the political climate had been irreversibly changed by the temporary expansion of the industry.
    [Show full text]
  • Spinning and Winding Taro Nishimura
    The_Textile_Machinery_Society_of_Japan_Textile_College_2-Day_Course_on_Cloth_Making_Introduction_to_Spinning_2014_05_22 Spinning and Winding Taro Nishimura 1. Introduction Since several thousand years ago, humans have been manufacturing linen, wool, cotton, and silk to be used as fibrous materials for clothing. In 繊維 (sen’i ), which is the word for “fiber,” the Chinese character 繊 (sen ) is a unit for decimal fractions of one ten-millionth (equal to approximately 30 Ǻ), while 維 (i) means “long and thin.” Usually, fibers are several dozen µ thick, and can range from around one centimeter long to nigh infinite length. All natural materials, with the exception of raw silk, are between several to several dozen centimeters long and are categorized as staple fibers. Most synthetic fibers are spun into filaments. Figure 1 shows how a variety of textile product forms are interrelated. Short fibers are spun into cotton (spun) yarns, whereas filaments are used just as they are, or as textured yarns by being twisted or stretched. Fabric cloths that are processed into two-dimensional forms using cotton (spun) yarns and filament yarns include woven fabrics, knit fabrics, nets, and laces. Non-woven fabrics are another type of two-dimensional form, in which staple fibers and filaments are directly processed into cloths without being twisted into yarns. Yet another two-dimensional form is that of films, which are not fiber products and are made from synthetic materials. Three-dimensional fabrics and braids are categorized as three-dimensional forms. This paper discusses spinning, or the process of making staple fibers into yarns, and winding, which prepares fibers for weaving. One-dimensional Two-dimensional Three-dimensional Natural Staple fibers Spun yarns Woven fabrics Three-dimensional materials Filaments Filament yarns Knit fabrics fabrics Synthetic Nets Braids materials Laces Non-woven fabrics Films Fig.
    [Show full text]
  • Paper 2: the Woollen Cloth Industry in the Lim Valley © Richard Bull & Lyme Regis Museum Revised with Extra Images July 2015
    Industrial Lyme - Paper 2: The Woollen Cloth Industry in the Lim Valley © Richard Bull & Lyme Regis Museum Revised with extra images July 2015 Like all research, this is on-going. If you know more, or are descended from any of the families involved, please get in touch with the author via Lyme Regis Museum. Summary Woollen cloth has been made in the Lim Valley from at least medieval times, but this paper is more about the factories in Lyme Regis and Uplyme that made high-quality West of England coat cloths. The factories in Lyme were bankrupt in 1847, leaving the Uplyme factory to soldier on against Yorkshire competition until it was destroyed by fire in 1866, whilst being modernised. In Lyme the factories were started up again in the 1850s to make silk thread and hemp twine, but only for a short period; these are the subjects of other papers in this series. This paper contains: the background to the trade, the history of the factories and a walking trail to see the mills. Cloth making – the essential process in a nutshell Sheep fleeces are packed on the farm into big canvas bags called woolsacks. At the factory the fleeces are scoured (washed) to remove lanolin (wool- grease), dirt and adhering vegetable material. Then the fleeces are scribbled (torn up into pieces), combed and carded to produce rovings, long strips of wool ready for spinning. Washed and combed fleece being fed into a carding machine at Coldharbour Mill, Uffculme, Devon Industrial Lyme Paper 2 – The Woollen Cloth Industry © R Bull & Lyme Regis Museum 1 Spinning means to draw out and twist - and by this process the scales of the individual wool fibres lock together to produce a thread known as a single.
    [Show full text]
  • The Industrial Revolution, 1700–1900
    The Industrial Revolution, 1700–1900 Previewing Main Ideas SCIENCE AND TECHNOLOGY From the spinning jenny to the locomotive train, there was an explosion of inventions and technological advances. These improvements paved the way for the Industrial Revolution. Geography What other European countries besides England had coal, iron, and textile industries in the 1800s? EMPIRE BUILDING The global power balance shifted after the Industrial Revolution. This shift occurred because industrialized nations dominated the rest of the world. Geography Study the map. Which country appears to be the most industrialized? ECONOMICS The Industrial Revolution transformed economic systems. In part, this was because nations dramatically changed the way they produced and distributed goods. Geography What geographic factors might have encouraged the development of industry in certain places? INTERNET RESOURCES • Interactive Maps Go to classzone.com for: • Interactive Visuals • Research Links • Maps • Interactive Primary Sources • Internet Activities • Test Practice VIDEO Patterns of Interaction: • Primary Sources • Current Events The Industrial and Electronic • Chapter Quiz Revolutions 280 281 What are fair working conditions? You are a 15-year-old living in England where the Industrial Revolution has spurred the growth of thousands of factories. Cheap labor is in great demand. Like millions of other teenagers, you do not go to school. Instead, you work in a factory 6 days a week, 14 hours a day. The small pay you receive is needed to help support your family. You trudge to work before dawn every day and work until after sundown. Inside the workplace the air is hot and foul, and after sunset it is so dark it is hard to see.
    [Show full text]
  • SOCIAL COUNCIL Mtniiiimhiuhhmtiimiiitniiiimiriiuniiitriiiiiiiftihiu ECONOMIC COMMISSION Î0R LATIN AMERICA
    UNITED NATI ONS GENERAL E/CN.I2/9I9 ECONOMIC September 1971 ENGLISH AND ORIGINAL: PORTUGUESE SOCIAL COUNCIL MtniiiimHiuHHmtiimiiitniiiimiriiuniiitriiiiiiiftiHiu ECONOMIC COMMISSION Î0R LATIN AMERICA THE TRAÍAS PER OF TECHNICAL KNOW-HOW IN THE TEXTILE AND CLOTHING INDUSTRIES IN BRAZIL prepared by Luigi Spreafico, Consultant J Note; This report foms part of a study undertaken ty the Economic Commission for Latin America (ECLA), the Interamerican Development Bank (IDB) and the Division of Public Finance and Financial Institutions of the United Nations Department of Economic and Social Affairs on the problems of the transfer of industrial technology in Brazil. I - iii - TABLE OF CONTENTS Page Chapter I. PRODUCTION IN THE TEXTILE INDUSTRY AND THE ACCUMULATION OF TECHNICAL KNOW-HOW OVER TIME 1 A. INTRODUCTION 1 B. THE ACCUMULATION OF TECHNICAL KNOW-HOW IN THE TEXTILE INDUSTRY 5 C. CHARACTERISTICS OF THE PRODUCTION PROCESS IN THE TEXTILE INDUSTRY 10 1. Basic concepts ........................... 10 2. Prospects of a radical change in the production processes of the textile industry 13 3i Classification of processes by type of fibre used 21 Chapter II. DIFFERENT WAYS OF TRANSFERRING KNOW-HOW IN THE TEXTILE INDUSTRY 26 A. BACKGROUND 26 1. The establishment of the textile industry in Latin America 26 2. Current trends 28 B. TRANSFER OF KNOW-HOW NEEDED TO ESTABLISH NEW MILLS 28 C. TRANSFER OF KNOW-HOW NEEDED FOR RE-STRUCTURING AND MODERNIZING OUT-OF-DATE FACTORIES 35 D. THE WAYS OF TRANSFERRING KNOW-HOW ON THE USE OF SPECIAL PROCESSES AND SYNTHETIC RAW MATERIALS 40 A. Use of - iV - Page 1. Use of synthetic raw materials ..........
    [Show full text]
  • Textile Institute
    NOVEMBER 1944 P 1 2 1 THE JOURNAL OF THE TEXTILE INSTITUTE THE BLEACHING OF JUTE FOR TEXTILE PURPOSES B y B . P . R i d g e and A . H . L i t t l e . SUMMARY Details are given of methods that have been found satisfactory for bleaching jute materials to different degrees without undue loss of weight or strength. For mild bleaching, treatment is suggested with cold or warm hypochlorite solutions that are maintained in an alkaline condition. Cold alkaline permanganate fol­ lowed by a bisulphite clearing process, and hot sodium chlorite under slightly acid conditions also give reasonable results. For better shades a hot peroxide bleach may be given after an alkaline hypochlorite treatment, but for uniformity it is best first to scour the material under mild conditions with a soda ash solution at 65° to 750 C., using about 7-5 per cent, of ash on the weight of jute, whilst still further improvement in shade is obtained if the scouring bath contains a small proportion of peroxide. Other methods that may be used are the ordinary peroxide bleach without previous hypochlorite treatment as normally used for cotton goods, or alternate steepings first in a dilute alkaline hypochlorite and then in a hot solution of sodium hydrosulphite or bisulphite. White or nearly white jute can be obtained only if substantially all the lignin is removed, when the wet strength is seriously reduced. Information is recorded on the bleaching of yarn in package form and on the processing of mixtures of jute with cotton, linen, wool and rayon.
    [Show full text]
  • Greek and Roman Textiles and Dress Ebook
    GREEK AND ROMAN TEXTILES AND DRESS PDF, EPUB, EBOOK Mary Harlow | 320 pages | 28 Feb 2015 | Oxbow Books | 9781782977155 | English | Oxford, United Kingdom Greek and Roman Textiles and Dress PDF Book The two scholars conclude that the technological innovation in textile production came from the east during all these periods. They had a chiton, which probably involved a certain amount of real sewing, although most of the needlework done by Greek women was in the form of embroidery. The spinster continued to feed tow from the distaff into the growing length of yarn until the spindle reached the floor. The peplos was fastened at the shoulders, armhole openings were left on each side, and the peplos might or might not be cinched with a belt. Caron, Beaudouin. Moffett, Kenworth. Italian Peninsula, B. Piotrovsky, Boris. Schlesinger Jr. It accompanies a major exhibition on view during the spring-summer of at The Costume Institute. Greene, Andrew. Her subject of study are the fullonicae of Ostia, for which she provides a number of diagrams illustrating the viewsheds from various locations within the workshops. Exchange was, not surprisingly, more common in the area of limes , but barbarians also exchanged Roman textiles with other barbarians, as is shown by Roman finds in the Baltic area of Poland. Tucker, Priscilla. Degas: The Artist's Mind. But opting out of some of these cookies may have an effect on your browsing experience. A short summary of this paper. Daniel, Malcolm. Rosenthal, Nan. Lazzarini, Lorenzo and Clemente Marconi. Greek and Roman Textiles and Dress Writer By merging the study of Greek religion and the study of textiles, the current study illustrates how textiles are, indeed, central materialisations of Greek cult, by reason of their capacity to accentuate and epitomize aspects of identity, spirituality, position in the religious system, by their forms as links between the maker, user, wearer, but also as key material agents in the performance of rituals and communication with the divine.
    [Show full text]
  • Inventions in the Cotton Industry
    Inventions in the Cotton Industry Paisley Thread Mill Museum A Family of Threads John Kay: The Flying Shuttle 1733 • For centuries handloom weaving had been carried out by the shuttle with the yarn on being passed slowly and awkwardly from one hand to the other. • In 1733 John Kay patented his flying shuttle which dramatically increased the speed of this process. • Kay placed shuttle boxes at each side of the loom connected by a long board, known as a shuttle race. • With cords, a single weaver, using one hand, could knock the shuttle back and forth across the loom from one shuttle box to the other. • A weaver using Kay's flying shuttle could produce much wider cloth at much faster speeds than before. James Hargreaves: The Spinning Jenny 1764 • In 1764 Hargreaves built what became known as the Spinning- Jenny. • The machine used eight spindles onto which the thread was spun. • By turning a single wheel, the operator could now spin eight threads at once. • Later, improvements were made that enabled the number to be increased to eighty. • However, the thread that the machine produced was coarse and lacked strength. Richard Arkwright: The Water Frame 1771 • Richard Arkwright: The Water Frame 1771 • In 1762 Richard Arkwright met John Kay and Thomas Highs, who were trying to produce a new spinning- machine, to improve on the Spinning-Jenny. • Kay and Highs had run out of money and Arkwright offered to employ John Kay to make the new machine, with other, local craftsman to help. • It was not long before the team produced the Spinning-Frame.
    [Show full text]
  • The Industrial Revolution - Making Cloth: the Start of the Industrial Revolution
    The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution by ReadWorks The Industrial Revolution got its start in the textile industry. Before the Industrial Revolution, making cloth was a very slow process. Cotton from cotton plants is puffy and full of seeds. First, the seeds had to be taken out, by hand. Next, the cotton had to be spun and stretched into thread, by hand. Finally, the thread was woven into cloth, by hand. Every step along the way required the full concentration of one person. Making cloth took a long time. In 1764, the process of turning cotton into cloth began to change. The three main steps stayed the same. But people began to use machines instead of doing everything manually. The machines did each step faster and faster. Some of the machines were huge. They couldn't fit into a person's home. The first factories were built to house machines and the workers needed to run them. Look at the timeline below. It describes the most important textile machines that were invented. Use it to answer the questions that follow. 1764: The spinning jenny was invented by James Hargreaves. This machine made it easier to make thread. 1769: Sir Richard Arkwright invented the water frame. Now weavers could keep up with all the thread that was being made. After the invention of the water frame, one weaver could weave the yarn from four spinners! The water frame was too big for homes. It only fit in factories.
    [Show full text]