The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation Running title: Human cell cycle gene promoter regulation Yuval Tabach1,2,5, Michael Milyavsky1,5, Igor Shats1,5, Ran Brosh1,5, Or Zuk2, Assif Yitzhaky2, Roberto Mantovani3, Eytan Domany2, Varda Rotter1 Yitzhak Pilpel4 1. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel 2. Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 Israel 3. Dipartimento di Scienze Biomolecolare e Biotecnologie, Universita di Milano, Milan, Italy 4. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel 5. These authors contributed equally to this work Correspondence to: Yitzhak Pilpel4 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 6058; Fax: +972 8 934 4108; E-mail:
[email protected] Varda Rotter1 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 4501; Fax: +972 8 946 5265; E-mail:
[email protected] Character Count = 75,000 1 Abstract Deciphering regulatory events that drive malignant transformation represents a major challenge for systems biology. Here we analyzed genome-wide transcription profiling of an in-vitro transformation process. We focused on a cluster of genes whose expression levels increased as a function of p53 and p16INK4A tumor suppressors inactivation. This cluster predominantly consists of cell cycle genes and constitutes a signature of a diversity of cancers. By linking expression profiles of the genes in the cluster with the dynamic behavior of p53 and p16INK4A, we identified a promoter architecture that integrates signals from the two tumor suppressive channels and that maps their activity onto distinct levels of expression of the cell cycle genes, which in turn, correspond to different cellular proliferation rates.