Misregulation of ELK1, AP1, and E12 Transcription Factor Networks Is Associated with Melanoma Progression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Manual: Pathdetect Reporter Cell Lines
PathDetect Reporter Cell Lines INSTRUCTION MANUAL Catalog #800050 (PathDetect HLR Cell Line) #800055 (HLR-Elk1 Cell Line) #800060 (HLR-CHOP Cell Line) #800065 (HLR-CREB Cell Line) Revision A BN #800050-12 For In Vitro Use Only 800050-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product. ORDERING INFORMATION AND TECHNICAL SERVICES United States and Canada Agilent Technologies Stratagene Products Division 11011 North Torrey Pines Road La Jolla, CA 92037 Telephone (858) 373-6300 Order Toll Free (800) 424-5444 Technical Services (800) 894-1304 Internet [email protected] World Wide Web www.stratagene.com Europe Location Telephone Fax Technical Services Austria 0800 292 499 0800 292 496 0800 292 498 Belgium 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 15775 0800 15740 0800 15720 France 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 919 288 0800 919 287 0800 919 289 Germany 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 182 8232 0800 182 8231 0800 182 8234 Netherlands 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 023 0446 +31 (0)20 312 5700 0800 023 0448 Switzerland 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 563 080 0800 563 082 0800 563 081 United Kingdom 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 917 3282 0800 917 3283 0800 917 3281 All Other Countries Please contact your local distributor. -
Expression of Oncogenes ELK1 and ELK3 in Cancer
Review Article Annals of Colorectal Cancer Research Published: 11 Nov, 2019 Expression of Oncogenes ELK1 and ELK3 in Cancer Akhlaq Ahmad and Asif Hayat* College of Chemistry, Fuzhou University, China Abstract Cancer is the uncontrolled growth of abnormal cells anywhere in a body, ELK1 and ELK3 is a member of the Ets-domain transcription factor family and the TCF (Ternary Complex Factor) subfamily. Proteins in this subfamily regulate transcription when recruited by SRF (Serum Response Factor) to bind to serum response elements. ELK1 and ELK3 transcription factors are known as oncogenes. Both transcription factors are proliferated in a different of type of cancer. Herein, we summarized the expression of transcription factor ELK1 and ELK3 in cancer cells. Keywords: ETS; ELK1; ELK3; Transcription factor; Cancer Introduction The ETS, a transcription factor of E twenty-six family based on a dominant ETS amino acids that integrated with a ~10-basepair element arrange in highly mid core sequence 5′-GGA(A/T)-3′ [1-2]. The secular family alter enormous 28/29 members which has been assigned in human and mouse and similarly the family description are further sub-divided into nine sub-families according to their homology and domain factor [3]. More importantly, one of the subfamily members such as ELK (ETS-like) adequate an N-terminal ETS DNA-binding domain along with a B-box domain that transmit the response of serum factor upon the formation of ternary complex and therefore manifested as ternary complex factors [4]. Further the ELK sub-divided into Elk1, Elk3 (Net, Erp or Sap2) and Elk4 (Sap1) proteins [3,4], which simulated varied proportional of potential protein- protein interactions [4,5]. -
New Mechanism Based Approaches for Treating Prostate Cancer Rayna Rosati Wayne State University
Wayne State University Wayne State University Dissertations 1-1-2017 New Mechanism Based Approaches For Treating Prostate Cancer Rayna Rosati Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Oncology Commons Recommended Citation Rosati, Rayna, "New Mechanism Based Approaches For Treating Prostate Cancer" (2017). Wayne State University Dissertations. 1865. https://digitalcommons.wayne.edu/oa_dissertations/1865 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. NEW MECHANISM BASED APPROACHES FOR TREATING PROSTATE CANCER by RAYNA C. ROSATI DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2017 MAJOR: CANCER BIOLOGY Approved By: Advisor Date DEDICATION This dissertation is dedicated to my family, who made me who I am today with all of their love and support. To my grandmother, Lucy, who just recently lost her battle with lung cancer and who would send me newspaper clippings in the mail about new topics of prostate cancer research. To my siblings, who have always been my best friends. To my father, Daniel, who has been my greatest mentor in life. To my mother, Nanci, who has been there for me through everything and who gave me my creative bone. ii ACKNOWLEDGEMENTS First off, I would like to thank my mentor, Dr. Manohar Ratnam, whose enthusiasm for science is undeniable. Thank you for always being so optimistic and believing I could accomplish this very challenging project. -
Modulation of Transcriptional Activity in Brain Lower Grade Glioma by Alternative Splicing
A peer-reviewed version of this preprint was published in PeerJ on 14 May 2018. View the peer-reviewed version (peerj.com/articles/4686), which is the preferred citable publication unless you specifically need to cite this preprint. Li J, Wang Y, Meng X, Liang H. 2018. Modulation of transcriptional activity in brain lower grade glioma by alternative splicing. PeerJ 6:e4686 https://doi.org/10.7717/peerj.4686 Modulation of transcriptional activity in brain lower grade glioma by alternative splicing Jin Li 1 , Yang Wang 1 , Xianglian Meng 1 , Hong Liang Corresp. 1 1 College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China Corresponding Author: Hong Liang Email address: [email protected] Proteins that modify the activity of transcription factor (TF), often called modulators, play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing and it can modulate gene function by adding or removing certain protein domains, and therefore influences the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various diseases, including Alzheimer’s disease and down syndrome. Results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. Meanwhile, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. Our analysis suggests, protein in different splicing level could play different functions on transcription factors, hence induces multiple genes dysregulation. -
The 50Th Anniversary of the Discovery of Trisomy 21: the Past, Present, and Future of Research and Treatment of Down Syndrome
REVIEW The 50th anniversary of the discovery of trisomy 21: The past, present, and future of research and treatment of Down syndrome Andre´Me´garbane´, MD, PhD1,2, Aime´ Ravel, MD1, Clotilde Mircher, MD1, Franck Sturtz, MD, PhD1,3, Yann Grattau, MD1, Marie-Odile Rethore´, MD1, Jean-Maurice Delabar, PhD4, and William C. Mobley, MD, PhD5 Abstract: Trisomy 21 or Down syndrome is a chromosomal disorder HISTORICAL REVIEW resulting from the presence of all or part of an extra Chromosome 21. Clinical description It is a common birth defect, the most frequent and most recognizable By examining artifacts from the Tumaco-La Tolita culture, form of mental retardation, appearing in about 1 of every 700 newborns. which existed on the border between current Colombia and Although the syndrome had been described thousands of years before, Ecuador approximately 2500 years ago, Bernal and Briceno2 it was named after John Langdon Down who reported its clinical suspected that certain figurines depicted individuals with Tri- description in 1866. The suspected association of Down syndrome with somy 21, making these potteries the earliest evidence for the a chromosomal abnormality was confirmed by Lejeune et al. in 1959. existence of the syndrome. Martinez-Frias3 identified the syn- Fifty years after the discovery of the origin of Down syndrome, the term drome in a terra-cotta head from the Tolteca culture of Mexico “mongolism” is still inappropriately used; persons with Down syn- in 500 patients with AD in which the facial features of Trisomy drome are still institutionalized. Health problems associated with that 21 are clearly displayed. -
Investigating the Role of the ETS Transcription Factor ELK1 in Stem Cell Transcription
Investigating the role of the ETS transcription factor ELK1 in stem cell transcription A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 Ian E. Prise Division of Molecular & Cellular Function School of Biological Sciences I. Table of Contents II. List of Figures ...................................................................................................................................... 5 III. Abstract .............................................................................................................................................. 7 IV. Declaration ......................................................................................................................................... 8 V. Copyright Statement ........................................................................................................................... 8 VI. Experimental Contributions ............................................................................................................... 9 VII. Acknowledgments .......................................................................................................................... 10 1. Introduction ...................................................................................................................................... 12 1.I Pluripotency ................................................................................................................................. 12 1.II Chromatin -
MEKK1/JNK Signaling Stabilizes and Activates P53
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10541–10546, September 1998 Biochemistry MEKK1/JNK signaling stabilizes and activates p53 SERGE Y. FUCHS*, VICTOR ADLER*, MATTHEW R. PINCUS†, AND ZE’EV RONAI*‡ *Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029; and †Department of Pathology and Laboratory Medicine, Brooklyn Veterans Affairs Medical Center and State University of New York Health Science, Brooklyn, NY 11203 Communicated by H. A. Scheraga, Cornell University, Ithaca, NY, July 7, 1998 (received for review May 4, 1998) ABSTRACT Activation of the tumor suppressor p53 by damage is preserved in cells from severe combined immunode- stress and damage stimuli often correlates with induction of ficient mice (10–12), we examined the role of JNK in this stress kinases, Jun-NH2 kinase (JNK). As JNK association response. with p53 plays an important role in p53 stability, in the JNKs are a family of stress kinases induced by change in redox present study we have elucidated the relationship between the potential, heat shock, osmotic shock, UV irradiation, and inflam- JNK-signaling pathway and p53 stability and activity. Expres- matory cytokines (13–16). JNK activity requires mitogen- sion of a constitutively active form of JNKK upstream kinase, activated protein kinases kinase (MEKK) 1–4 which phosphor- mitogen-activated protein kinase kinase kinase (DMEKK1), ylates MKK4/7. MKK4/7, in turn, phosphorylates JNK on resi- increased the level of the exogenously transfected form of p53 dues 183 and 185 (17–20). Activated JNK phosphorylates its in p53 null (10.1) cells as well as of endogenous p53 in MCF7 substrates, c-Jun, ATF2, ELK1, and p53 (3, 13–14, 21). -
(SUMO) Substrates Identify Arabidopsis Proteins Implicated in Diverse Biological Processes
Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes Nabil Elrouby1 and George Coupland1 Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne 50829, Germany Edited by Mark Estelle, University of California at San Diego, La Jolla, CA, and approved August 17, 2010 (received for review April 21, 2010) Covalent modification of proteins by small ubiquitin-like modifier the substrate and the C-terminal glycine residue of SUMO (14, (SUMO) regulates various cellular activities in yeast and mamma- 16). In Arabidopsis, SCE and SAE2 are encoded by single genes, lian cells. In Arabidopsis, inactivation of genes encoding SUMO or whereas SAE1 is encoded by two genes (SAE1a and SAE1b) (17). SUMO-conjugation enzymes is lethal, emphasizing the importance In plants and mammals, SUMO, SUMO ligases, and SUMO of SUMOylation in plant development. Despite this, little is known proteases are encoded by multigene families (15, 17). Different about SUMO targets in plants. Here we identified 238 Arabidopsis SUMO isoforms are conjugated to specific substrates, and this is proteins as potential SUMO substrates because they interacted regulated by specific ligases and proteases. Whereas SUMO with SUMO-conjugating enzyme and/or SUMO protease (ESD4) in ligases aid in the conjugation reaction, SUMO proteases cleave the yeast two-hybrid system. Compared with the whole Arabidop- SUMO from substrates (deconjugation) and cleave a C-terminal sis proteome, the identified proteins were strongly enriched for extension in precursor SUMO proteins to expose a glycine resi- those containing high-probability consensus SUMO attachment due (processing) that can be conjugated to the substrate protein sites, further supporting that they are true SUMO substrates. -
1 Loss of ELK1 Has Differential Effects on Age-Dependent Organ Fibrosis
bioRxiv preprint doi: https://doi.org/10.1101/755694; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of ELK1 has differential effects on age-dependent organ fibrosis and integrin expression Running title Aged, ELK1 deficient mice develop fibrosis and altered integrin expression Jennifer T Cairns1, Anthony Habgood1, Rochelle C Edwards-Pritchard1, Chloe Wilkinson1, Iain D Stewart1, Jack Leslie2, Burns C Blaxall3, Katalin Susztak4, Siegfried Alberti5, Alfred Nordheim5, Fiona Oakley2, R Gisli Jenkins1, Amanda L Tatler1. 1 Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK and Respiratory Research Unit, NIHR Biomedical Research Centre, Nottingham University Hospitals Nottingham, UK. 2 Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK 3 Department of Precision Medicine and Pharmacogenetics, The Christ Hospital Health Network, Cincinnati, Ohio, USA 4 Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA 5 Interfaculty Institute of Cell Biology, Tuebingen University, Germany and 6 Leibniz Institute on Aging (FLI), Jena, Germany 1 bioRxiv preprint doi: https://doi.org/10.1101/755694; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Comparing Subtypes of Breast Cancer Using a Message-Passing Network
Dana-Farber Cancer Institute Comparing Subtypes of Breast Cancer Using a Kamrine Poels Message-Passing Network Outline ❖ Breast cancer and its molecular subtypes ❖ Passing Attributes between Networks for Data Assimilation (PANDA) ❖ Luminal A vs. Luminal B breast cancer ❖ Basal-like vs. Luminal B breast cancer Gene Sets ❖ Future goals Molecular Subtypes of Breast Cancer ❖ Four recognized molecular subtypes of breast cancer: ❖ Luminal A ❖ Luminal B ❖ Basal (also called Triple Negative BC) ❖ HER2-positive (ERBB2) ❖ 198 samples came from Bioconductor public website, data is Breast Cancer TRANSBIG ❖ Samples were separated according to molecular subtype using the Subtype Clustering Model[1] 71 samples were Luminal A, 60 samples were Luminal B, 45 samples were Basal-like breast cancer, and 22 samples were HER2+. Luminal A and Luminal B are distinguished by level of proliferation. PANDA Algorithm[2] ❖ Main objective of PANDA is to find agreement between data represented by multiple networks: ❖ Protein-protein interaction ❖ Gene-expression (co-regulation network) ❖ TF-gene interaction (regulatory network) TF-Motif Scan PP interaction0 Network0 Co-regulation0 Responsibility Availability PP interaction1 Network1 Co-regulation1 PANDA estimates the probability that an edge exists in a network and returns that estimate in terms of Z-score units ❖ Responsibility(Rij): information flowing from TF i to gene j TF-Motif Scan (t) (t) Pim Wmj PP interaction0 Network0 Co-regulation0 (t) m Rij = 2 P 2 P (t) + W (t) P (t)W (t) im mj − im mj s m m m Responsibility -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. -
Quantitative SUMO Proteomics Reveals the Modulation of Several
www.nature.com/scientificreports OPEN Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated Received: 10 October 2017 Accepted: 28 March 2018 proteins and an anti-senescence Published: xx xx xxxx function of UBC9 Francis P. McManus1, Véronique Bourdeau2, Mariana Acevedo2, Stéphane Lopes-Paciencia2, Lian Mignacca2, Frédéric Lamoliatte1,3, John W. Rojas Pino2, Gerardo Ferbeyre2 & Pierre Thibault1,3 Several regulators of SUMOylation have been previously linked to senescence but most targets of this modifcation in senescent cells remain unidentifed. Using a two-step purifcation of a modifed SUMO3, we profled the SUMO proteome of senescent cells in a site-specifc manner. We identifed 25 SUMO sites on 23 proteins that were signifcantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9’s ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation. Many cellular mechanisms of defense have evolved to reduce the onset of tumors and potential cancer develop- ment. One such mechanism is cellular senescence where cells undergo cell cycle arrest in response to various stressors1,2. Multiple triggers for the onset of senescence have been documented. While replicative senescence is primarily caused in response to telomere shortening3,4, senescence can also be triggered early by a number of exogenous factors including DNA damage, elevated levels of reactive oxygen species (ROS), high cytokine signa- ling, and constitutively-active oncogenes (such as H-RAS-G12V)5,6.