Wetting Assessment Using the Dispensed Drop Method in the Field of Hot-Dip Galvanizing Marie-Laurence Giorgi, Alexey Koltsov

Total Page:16

File Type:pdf, Size:1020Kb

Wetting Assessment Using the Dispensed Drop Method in the Field of Hot-Dip Galvanizing Marie-Laurence Giorgi, Alexey Koltsov Wetting assessment using the dispensed drop method in the field of hot-dip galvanizing Marie-Laurence Giorgi, Alexey Koltsov To cite this version: Marie-Laurence Giorgi, Alexey Koltsov. Wetting assessment using the dispensed drop method in the field of hot-dip galvanizing. Galvatech 2017, Nov 2017, Tokyo, Japan. hal-01810788 HAL Id: hal-01810788 https://hal.archives-ouvertes.fr/hal-01810788 Submitted on 8 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WETTING ASSESSMENT USING THE DISPENSED DROP METHOD IN THE FIELD OF HOT-DIP GALVANIZING Marie-Laurence Giorgi 1, Alexey Koltsov 2 1 CentraleSupélec, Université Paris-Saclay, Laboratoire de Génie des Procédés et Matériaux (LGPM), 3 rue Joliot-Curie, F-91192 Gif-sur-Yvette cedex, France 2 ArcelorMittal Global R&D - Maizières Process Research Centre, Voie Romaine, 57283 Maizières-lès-Metz ABSTRACT In hot-dip galvanizing, the steel strip is annealed in an atmosphere of N 2 and H 2, containing only traces of water. One of the main purposes of this heat treatment is to reduce the iron oxides present at the steel surface, in order to improve the wettability by liquid zinc. At the same time, the less-noble alloying elements (Mn, Si, P, Cr, Al) of the steel segregate to the surface and preferentially oxidize. The steel surface is then composed of metallic iron (wetted by liquid zinc) and oxide particles or films (non-wetted by liquid zinc). The main features of wetting are first presented (surface energy, triple line, contact angle) together with simple models to estimate the equilibrium contact angle (Young’s, Wenzel’s and Cassie’s models). Two examples of studies performed by means of the dispensed drop technique in the field of hot-dip galvanizing will then be presented: the forced wetting of a partly oxidized steel by liquid Zn - Al and the final contact angle of a liquid Zn - Al droplet on iron / silica heterogeneous surfaces. Keyword: Selective oxidation, heterogeneous wetting, kinetic and surface energies INTRODUCTION Wetting refers to the study of how a liquid deposited on a solid (or liquid) substrate spreads out. To begin with, the main features of wetting will be defined, namely the surface energy, the triple line, the static and dynamic contact angles and the contact angle hysteresis. Then, it will be shown how to predict the equilibrium contact angle in the case of ideal surfaces (Young’s equation) and rough or heterogeneous surfaces (Wenzel’s and Cassie’s equations). Wetting can be studied at the laboratory scale by means of the dispensed drop technique , in which a liquid droplet is released on a solid sample and its spreading is filmed using a high-speed camera. The parameters characteristic of the wetting can be determined from the images of the film, e.g. the impact velocity of the droplet on the solid substrate, the spreading diameter, the left and right contact angles, the contact angle hysteresis. The dispensed drop technique is particularly well suited to investigate the wettability by liquid metals. This technique will be described in the second part of the paper. In hot-dip galvanizing , the wetting of the steel substrate by the liquid metal bath is the first critical step. Before immersion in the molten metal bath, the steel strip is annealed at about 800 °C in a mixture of N2 and H2 (5 to 15 vol.%) containing a low water partial pressure (20 to 50 Pa). This annealing allows to recrystallize the structure of the steel after cold rolling and to prevent the iron oxidation of the steel surface. However, the conditions used favour the segregation towards the surface and the oxidation of the strengthening alloying elements in steel (Si, Al and Mn for example). After annealing, the steel surface is then composed of metallic iron (wetted by liquid zinc) and oxide particles or films (non- wetted by liquid zinc). In this context, two examples of studies performed by means of the dispensed drop technique will be presented: 1) the forced wetting of a partly oxidized steel by a liquid Zn - Al droplet as a function of its initial kinetic energy and 2) the final contact angle of a liquid Zn - Al droplet obtained on heterogeneous surfaces composed of silica and iron as a function of the surface area fraction covered by silica. SOME FUNDAMENTALS EQUATIONS OF WETTING 1-3) Wetting refers to the study of how a liquid deposited on a solid (or liquid) substrate spreads out. To begin with, the main features of wetting will be defined, namely the surface energy, the triple line, the static and dynamic contact angles and the contact angle hysteresis. Then, it will be shown how to predict the equilibrium contact angle in the case of ideal surfaces (Young’s equation) and rough or heterogeneous surfaces (Wenzel’s and Cassie’s equations). Definitions (surface or interfacial tension, triple line, contact angle) The increase in the surface of a liquid L in contact with a vapour V requires work so that: = . (1) The surface (or interfacial) tension of liquid L in contact with vapour V is then defined as the work by surface unit (in mJ.m -2) required to increase the area of the liquid. For pure liquid zinc, at a temperature T in the range [420, 600°C] 4) , [mJ m ] = 817 ± 15 − 0.23 ± 0.03 . [°C ] − 420 (2) and, in particular, at 450°C, = 810 ± 1 mJ m . Surface energies for solid / vapour and solid / liquid interfaces, called interfacial tensions and noted ! and ! respectively, are defined in the same way. To our knowledge, the surface energies required in the field of hot-dip galvanizing, namely α-iron in equilibrium with saturated zinc vapour and α-iron in contact with liquid zinc, have not been measured yet. As a consequence of Eq. (1), in order to minimize the system’s energy, a droplet placed on a solid takes the shape of a spherical cap if it is small enough in size for gravity to have negligible effect (Figure 1a). The rim of the droplet where the three phases (liquid, solid and vapour) are in contact is called the triple line. The wetting or contact angle θ is defined by the tangent to the droplet and the horizontal substrate. The term of perfect wetting is used if θ = 0°, high partial wetting if θ < 90°, low partial wetting if θ > 90° and no wetting if θ = 180°. When the droplet is spreading on the solid, the contact angle depends on time and is called dynamic contact angle. a) γ LV b) c) θ θW θC vapour liquid γ solid γ SL SV rW f1 f2 Figure 1: A small droplet in equilibrium on a) a flat horizontal surface (Young contact angle " = "#), b) a rough surface (Wenzel contact angle " = "$) and c) an heterogeneous surface (Cassie contact angle " = "%). Equilibrium, advancing and receding contact angles The contact angle at equilibrium on an ideal surface (i.e., smooth and homogeneous), "#, is called the Young contact angle. "# is constant at every point of the triple line and is given by Young’s equation: ! − ! cos "# = (3) For non-ideal solids (i.e. rough and / or chemically heterogeneous), the contact angle θ is not unique but lies between a receding contact angle ") and an advancing contact angle "* . This is called the contact angle hysteresis. Wenzel’s and Cassie’s equation As mentioned earlier, the Young's equation is only valid for a smooth and chemically homogeneous surface. Wenzel 5) and Cassie 6) were among the first ones to be interested in the equilibrium contact angle obtained on rough and heterogeneous surfaces (Figures 1b and 1c). On a randomly rough substrate (Figure 1b), the apparent contact angle at the macroscopic scale "$ is given by Wenzel’s law. Let us consider an infinitesimal displacement + of the triple contact line on the homogeneous rough surface. The change in the Helmholtz free energy , $ associated with this infinitesimal displacement per unit length of the triple contact line is given by: , $ = ! − ! -$+ . cos "$ + (4) Assuming that the local contact angle corresponds to the Young contact angle (Eq. 3), the macroscopic contact angle " can be given by Wenzel’s law at equilibrium ( , $ = 0): /01 "$ = -$ 2 /01 "# (5) with -$ the surface roughness, also called Wenzel’s roughness, defined by the ratio between the actual surface area and its apparent value obtained by the horizontal plane ( -$ 3 1). Let us now consider the case of a smooth and randomly heterogeneous surface (Figure 1c), consisting of two different solids 1 and 2, with Young contact angles "#4 and "# and surface area fractions 54 and 5 = 1 − 54. An infinitesimal displacement + of the triple contact line on the surface causes a change in the Helmholtz free energy , % per unit length of the triple contact line: , % = ! 4 − ! 4 54+ . ! − ! 5+ . cos "% + (6) where !6 and !6 are the surface energies for the solid / liquid and solid / vapour interfaces of solid i (i = 1 or 2). At equilibrium, the apparent contact angle is given by Cassie’s law: /01 "% = 54/01 "#4 . 5/01" # (7) METHODS OF MEASURING WETTABILITY PARAMETERS At high temperature, wetting can be studied by means of the sessile drop method or the wetting balance technique.
Recommended publications
  • Water Drop Patch Project Making a Difference
    United States Office of Water Environmental Protection (4501T) March 2008 Agency Washington, DC 20460 EPA 840-B-07-001 _________________________________________________________________________ Water Drop Patch Project Photo courtesy of GSUSA Making a Difference Acknowledgments Authors Meghan Klasic (author of new version of patch manual) Oak Ridge Institude of Science and Education Intern, USEPA Office of Wetlands, Oceans, and Watersheds Patricia Scott (co-author of original patch manual) USEPA’s Office of Wetlands, Oceans, and Watersheds Karen Brown (co-author of original patch manual) Retired, Girl Scout Council of the Nation’s Capital Editor Martha Martin, Tetra Tech, Inc. Contributors A great big thanks also goes out to the following people and organizations for their contributions, including images, photographs, text, formatting, and overall general knowledge: Jodi Stewart Schwarzer, Project Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program, Linking Girls to the Land Elliott Wildlife Values Project Kathleen Cullinan, Manager, Environmental & Outdoor Program Girl Scouts of the USA’s Environmental and Outdoor Program Matthew Boone, Kelly Brzezinski, Aileen Molloy, Scott Morello, American Horticultural Society, Fish and Wildlife Service, Girl Scouts of the United States of America, National Oceanic Atmospheric Administration, United States Geological Survey, U.S. Environmental Protection Agency. This resource is updated periodically and is available for free through the National Service Center for Environmental Publications (NSCEP) by calling toll-free (800) 490-9198 or e-mailing [email protected]. It is also available online at www.epa.gov/adopt/patch. Inquiries or suggestions related to the project should be directed to Patricia Scott, United States Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460 (Mail Code 4501T).
    [Show full text]
  • An Introduction to Inhomogeneous Liquids, Density Functional Theory, and the Wetting Transition Adam P
    An introduction to inhomogeneous liquids, density functional theory, and the wetting transition Adam P. Hughes, Uwe Thiele, and Andrew J. Archer Citation: American Journal of Physics 82, 1119 (2014); doi: 10.1119/1.4890823 View online: http://dx.doi.org/10.1119/1.4890823 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/82/12?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Density functional theory of inhomogeneous liquids. II. A fundamental measure approach J. Chem. Phys. 128, 184711 (2008); 10.1063/1.2916694 Mean-field density-functional model of a second-order wetting transition J. Chem. Phys. 128, 114716 (2008); 10.1063/1.2895748 Surface phase transitions in athermal mixtures of hard rods and excluded volume polymers investigated using a density functional approach J. Chem. Phys. 125, 204709 (2006); 10.1063/1.2400033 Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic∕density-functional theory J. Chem. Phys. 125, 144515 (2006); 10.1063/1.2357937 Perfect wetting along a three-phase line: Theory and molecular dynamics simulations J. Chem. Phys. 124, 244505 (2006); 10.1063/1.2206772 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.176.202.20 On: Wed, 03 Dec 2014 08:24:19 An introduction to inhomogeneous liquids, density functional theory, and the wetting transition Adam P. Hughes Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom Uwe Thiele Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom and Institut fur€ Theoretische Physik, Westfalische€ Wilhelms-Universitat€ Munster,€ Wilhelm Klemm Str.
    [Show full text]
  • Effect of Temperature on Wetting Angle
    San Jose State University SJSU ScholarWorks Faculty Publications, Biomedical, Chemical, and Biomedical, Chemical and Materials Materials Engineering Engineering 7-1-1997 Effect of Temperature on Wetting Angle Guna S. Selvaduray San Jose State University, [email protected] R. Brindos San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/chem_mat_eng_pub Part of the Chemical Engineering Commons Recommended Citation Guna S. Selvaduray and R. Brindos. "Effect of Temperature on Wetting Angle" National Educators' Workshop: Update 96 - Standard Experiments in Engineering Materials Science and Technology, NASA Publication 3354 (1997): 137-151. This Article is brought to you for free and open access by the Biomedical, Chemical and Materials Engineering at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications, Biomedical, Chemical, and Materials Engineering by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. NASA Conference Publication 3354 National Educators' Workshop: Update 96 Standard Experiments.in Engineering Materials Science and Technology Compiled by James E. Gardner and Ginger L. Freeman Langle~; Research Center • Hampton, Virginia James A. Jacobs Norfolk State University • Norfolk, Virginia Don M. Parkin Los Alamos National Laboratory • Los Alamos, New Mexico Proceedings of a workshop sponsored jointly by the United States Department of Energy, Los Alamos, New Mexico, the National Aeronautics and Space Administration,
    [Show full text]
  • Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing
    energies Article Viscosity Loss and Hydraulic Pressure Drop on Multilayer Separate Polymer Injection in Concentric Dual-Tubing Yi Zhang 1, Jiexiang Wang 1,*, Peng Jia 2, Xiao Liu 1, Xuxu Zhang 1, Chang Liu 1 and Xiangwei Bai 1 1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] (Y.Z.); [email protected] (X.L.); [email protected] (X.Z.); [email protected] (C.L.); [email protected] (X.B.) 2 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; [email protected] * Correspondence: [email protected] Received: 13 February 2020; Accepted: 23 March 2020; Published: 2 April 2020 Abstract: Multilayer separate polymer injection in concentric dual-tubing is a special method for enhancing oil recovery in later development stage of the multilayer formation. During the injection process, heat exchange occurs among the inner tubing, tubing annulus and formation, making the thermal transfer process more complicated than traditional one. This work focuses on the polymer flowing characteristics during the multilayer separate polymer flooding injection process in the wellbore. A temperature–viscosity numerical model is derived to investigate the influencing factors on polymer dual-tubing injection process. Then, an estimate-correct method is introduced to derive the numerical solutions. Several influences have been discussed, including the axial temperature distribution, viscosity distribution, pressure drop, and flow pattern of polymer. Results show that under low injecting rates, below 5 m3/d, formation temperature will greatly decrease the polymer viscosity. When the injecting rates above 20 m3/d, the polymer just decreases 1–3 mPa s at the bottom · of well, which is really small.
    [Show full text]
  • Wetting−Dewetting Transition Line in Thin Polymer Films K
    Subscriber access provided by NATL INST STANDARDS & TECH Research Article Wetting−Dewetting Transition Line in Thin Polymer Films K. M. Ashley, D. Raghavan, J. F. Douglas, and A. Karim Langmuir, 2005, 21 (21), 9518-9523• DOI: 10.1021/la050482y • Publication Date (Web): 09 September 2005 Downloaded from http://pubs.acs.org on February 10, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Links to the 9 articles that cite this article, as of the time of this article download • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Langmuir is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 9518 Langmuir 2005, 21, 9518-9523 Wetting-Dewetting Transition Line in Thin Polymer Films K. M. Ashley,† D. Raghavan,*,† J. F. Douglas,*,‡ and A. Karim*,‡ Polymer Program, Department of Chemistry, Howard University, Washington, DC 20059, and Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 Received February 23, 2005. In Final Form: June 14, 2005 Thin polymeric films are increasingly being utilized in diverse technological applications, and it is crucial to have a reliable method to characterize the stability of these films against dewetting. The parameter space that influences the dewetting of thin polymer films is wide (molecular mass, temperature, film thickness, substrate interaction) and a combinatorial method of investigation is suitable. We thus construct a combinatorial library of observations for polystyrene (PS) films cast on substrates having orthogonal temperature and surface energy gradients and perform a series of measurements for a range of molecular masses (1800 g/mol < M < 35 000 g/mol) and film thicknesses h (30 nm < h < 40 nm) to explore these primary parameter axes.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Drop Size Dependence of the Apparent Surface Tension of Aqueous Solutions in Hexane Vapor As Studied by Drop Profile Analysis Tensiometry
    colloids and interfaces Article Drop Size Dependence of the Apparent Surface Tension of Aqueous Solutions in Hexane Vapor as Studied by Drop Profile Analysis Tensiometry Valentin B. Fainerman 1, Volodymyr I. Kovalchuk 2 , Eugene V. Aksenenko 3,* , Altynay A. Sharipova 4, Libero Liggieri 5 , Aliyar Javadi 6, Alexander V. Makievski 1, Mykola V. Nikolenko 7 , Saule B. Aidarova 4 and Reinhard Miller 8 1 Sinterface Technologies, D12489 Berlin, Germany; [email protected] (V.B.F.); [email protected] (A.V.M.) 2 Institute of Biocolloid Chemistry, National Academy of Sciences of Ukraine, 03680 Kyiv (Kiev), Ukraine; [email protected] 3 Institute of Colloid Chemistry and Chemistry of Water, National Academy of Sciences of Ukraine, 03680 Kyiv (Kiev), Ukraine 4 Kazakh-British Technical University, 050000 Almaty, Kazakhstan; [email protected] (A.A.S.); [email protected] (S.B.A.) 5 CNR-Institute of Condensed Matter Chemistry and Technologies for Energy, Unit of Genoa, 16149 Genoa, Italy; [email protected] 6 Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany; [email protected] 7 Ukrainian State University of Chemical Technology, 49000 Dnipro, Ukraine; [email protected] 8 Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany; [email protected] * Correspondence: [email protected] Received: 2 July 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: Surface tension experiments were performed using the drop profile analysis tensiometry method. The hexane was injected into the measuring cell at certain times before the formation of the solution drop. The influence of the capillary diameter and solution drop size on the measured apparent dynamic surface tension was studied.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Development of Testing Protocols For
    DEVELOPMENT OF TESTING PROTOCOLS FOR DIRECT MEASUREMENTS OF CONTACT ANGLES ON AGGREGATE AND ASPHALT BINDER SURFACES USING A SESSILE DROP DEVICE By MURAT KOC Bachelor of Science in Civil Engineering Bogazici University Istanbul, Turkey 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2013 DEVELOPMENT OF TESTING PROTOCOLS FOR DIRECT MEASUREMENTS OF CONTACT ANGLES ON AGGREGATE AND ASPHALT BINDER SURFACES USING A SESSILE DROP DEVICE Thesis Approved: Dr. Rifat Bulut Thesis Adviser Dr. Stephen A. Cross Dr. Gregory G. Wilber ii ACKNOWLEDGEMENTS I would like express my most sincere gratitude to my advisor Prof. Rifat Bulut, for his enthusiasm, his encouragement, and his endless support in my graduate education and research studies. His wisdom and guidance helped me to finish my M.S. degree. I would like to thank all of my family members for their love and support in every field of my life. I am also indebted to my committee members, Prof. Stephen A. Cross and Prof. Gregory G. Wilber. I owe most of my knowledge about this thesis subject to their lectures and tutoring. I would like to thank to Prof. James Puckette from Geology Department at Oklahoma State University for letting me use his lab facilities. My lab friends Aditya Rayudu and Anjana Thoroppady Kittu helped me in many steps of the laboratorial work. I appreciate their help and wish them good luck in their graduate educations. Last but not the least; I want to thank the Oklahoma Transportation Center for their financial support in this project.
    [Show full text]
  • Drops and Bubbles in Wedges Etienne Reyssat
    Drops and bubbles in wedges Etienne Reyssat To cite this version: Etienne Reyssat. Drops and bubbles in wedges. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2014, 748, pp.641-662. 10.1017/jfm.2014.201. hal-02104705 HAL Id: hal-02104705 https://hal.archives-ouvertes.fr/hal-02104705 Submitted on 17 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Under consideration for publication in J. Fluid Mech. 1 Drops and bubbles in wedges Etienne Reyssat1y 1PMMH, CNRS UMR 7636 - ESPCI - UPMC Universit´eParis 6 - UPD Universit´eParis 7, 10 rue Vauquelin, 75005 Paris, France, EU (Received ?; revised ?; accepted ?. - To be entered by editorial office) We investigate experimentally the spontaneous motion of drops and bubbles confined between two plates forming a narrow wedge. Such discoidal objects migrate under the gradient in interfacial energy induced by the non-homogeneous confinement. The result- ing capillary driving force is balanced by viscous resistance. The viscous friction on a drop bridging parallel plates is estimated by measuring its sliding velocity under gravity. The viscous forces are the sum of two contributions, from the bulk of the liquid and from contact lines, the relative strength of which depends on the drop size and velocity and the physical properties of the liquid.
    [Show full text]
  • Dynamics of Wetting: from Inertial Spreading to Viscous Imbibition
    IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matte 21 !"##$% &'&(") !(*++% do,:(#.(#--.#$/*0-$-&."(.&'.&'&(") Dynamics of wetting: from inertial spreading to viscous imbibition L Courbin(,", J C Bird(, M Reyssat( and ! "tone(,* ( S1hoo2 o3 En4,nee ,n4 and A++2,ed S1,en1es5 Ha 6a d Un,6e s,ty5 Ca78 ,d4e5 MA #"(*-5 USA " IPR5 UMR CNRS '"/(5 Ca7+9s Bea92,e95 Un,6e s,t:eRennes (5 */#&" Rennes5 F an1e E-7a,2: hastone;+ ,n1eton.ed9 Recei6ed "# Ap ,2 "##$5 in <nal fo 7 $ J9ly "##$ P982,shed "$ Octo8e "##$ On2,ne at sta1=s.,o+.o 4.JPhysCM."(.&'&(") !bstract >e e+o t the ,n?9en1e o3 the nat9 e o3 8o9nda ,es on the dyna7,1s o3 @ett,n4. >e e6,e@ so7e @o = e1ently +982,shed and h,4h2,4ht ne@ eApe ,7ental obser6ations. O9 paper 8e4ins @,th the s+ ead,n4 o3 d o+s on s98st ates and de7onst ates ho@ the eA+onents o3 the s+ ead,n4 2a@s a e a33e1ted e,the 8y the s9 3a1e 1he7,st y o 8y the d o+2et sha+e. >e then d,s19ss the ,78,8,t,on o3 1o7+2ete2y and +a t,a22y @ett,n4 ?9,ds ,nto 1hanne2s and o6e 7,1 oteAt9 ed s9 3a1es. Start,ng with the one0di7ens,ona2 ,78,8,t,on o3 1o7+2ete2y @ett,n4 2,B9,ds ,n t98es and s9 3a1e teAt9 es5 we sho@ that !,% sha+e 6a ,at,ons o3 1hanne2s 1han4e the +owe 02a@ es+onse o3 the ,78,8,t,on and !,,% the 4eo7et ,1a2 +a a7ete s o3 a s9 3a1e o94hness 1han4e the s+ ead,n4 8eha6,o .
    [Show full text]