Amino Acids Ross W

Total Page:16

File Type:pdf, Size:1020Kb

Amino Acids Ross W Recognition of Class II MHC Peptide Ligands That Contain β-Amino Acids Ross W. Cheloha, Andrew W. Woodham, Djenet Bousbaine, Tong Wang, Shi Liu, John Sidney, Alessandro Sette, Samuel This information is current as H. Gellman and Hidde L. Ploegh of October 2, 2021. J Immunol published online 7 August 2019 http://www.jimmunol.org/content/early/2019/08/06/jimmun ol.1900536 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/08/06/jimmunol.190053 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 7, 2019, doi:10.4049/jimmunol.1900536 The Journal of Immunology Recognition of Class II MHC Peptide Ligands That Contain b-Amino Acids Ross W. Cheloha,* Andrew W. Woodham,* Djenet Bousbaine,*,† Tong Wang,‡ Shi Liu,‡ John Sidney,x Alessandro Sette,x,{ Samuel H. Gellman,‡ and Hidde L. Ploegh* Proteins are composed of a-amino acid residues. This consistency in backbone structure likely serves an important role in the display of an enormous diversity of peptides by class II MHC (MHC-II) products, which make contacts with main chain atoms of their peptide cargo. Peptides that contain residues with an extra carbon in the backbone (derived from b-amino acids) have biological properties that differ starkly from those of their conventional counterparts. How changes in the structure of the peptide backbone affect the loading of peptides onto MHC-II or recognition of the resulting complexes by TCRs has not been widely explored. We prepared a library of analogues of MHC-II–binding peptides derived from OVA, in which at least one a-amino acid residue was replaced with a homologous b-amino acid residue. The latter contain an extra methylene unit in the peptide backbone Downloaded from but retain the original side chain. We show that several of these a/b-peptides retain the ability to bind tightly to MHC-II, activate TCR signaling, and induce responses from T cells in mice. One a/b-peptide exhibited enhanced stability in the presence of an endosomal protease relative to the index peptide. Conjugation of this backbone-modified peptide to a camelid single-domain Ab fragment specific for MHC-II enhanced its biological activity. Our results suggest that backbone modification offers a method to modulate MHC binding and selectivity, T cell stimulatory capacity, and susceptibility to processing by proteases such as those found within endosomes where Ag processing occurs. The Journal of Immunology, 2019, 203: 000–000. http://www.jimmunol.org/ he immune system recognizes and responds to proteina- through the action of proteases and peptidases (1, 2). The resulting ceous Ags through the production and display of short peptides are then exposed to receptive MHC molecules through a peptide Ags bound to the products of the MHC. Class I coordinated series of trafficking steps that differ for MHC-I T + MHC (MHC-I) products that stimulate CD8 T cells typically and MHC-II (3). Productive binding of peptide to MHC yields display peptides of 8–10 residues in length, derived mostly from peptide–MHC complexes that are transported for display at the intracellular proteins, whereas class II MHC (MHC-II) products surface of the APC. These complexes engage TCR complexes, that stimulate CD4+ T cells display longer peptides, mostly from stimulate TCR signaling, and drive subsequent T cell–mediated proteins originating in extracellular space or their topological immune responses. Each of these steps (proteolysis, MHC bind- by guest on October 2, 2021 equivalents. The loading of peptides onto MHC products requires ing, TCR recognition) requires recognition of the polypeptide the breakdown of the source proteins into peptide fragments Ag or some part of it. Modifications of peptide structure can affect each recognition step required for T cell engagement. Structural alterations that affect recognition by proteases can protect peptides against pro- *Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115; †Massachusetts Institute of Technology, Cambridge, MA 02142; ‡Department of teolysis, which not only generates but can also destroy the ligands x Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Division of presented by MHC-II products. For example, synthetic proteins Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and {Department of Medicine, University of California San Diego, La Jolla, composed entirely of D-amino acids are not degraded by proteases CA 92161 and cannot be processed for loading onto MHC products. Such ORCIDs: 0000-0001-9871-8333 (R.W.C.); 0000-0003-2683-9544 (D.B.); 0000- proteins therefore fail to induce immune responses that require 0003-4208-5578 (T.W.); 0000-0002-0987-405X (J.S.); 0000-0001-7013- T cell participation (4). Alternatively, the introduction of modifi- 2250 (A.S.); 0000-0001-5617-0058 (S.H.G.); 0000-0002-1090-6071 (H.L.P.). cations that inhibit extracellular proteolysis can enhance the effi- Received for publication May 9, 2019. Accepted for publication July 5, 2019. cacy of peptide vaccines (5). In some cases, endosomal proteolysis This work was supported by National Institutes of Health (NIH) National Institute of can destroy potentially antigenic peptides (6), and in this context, Allergy and Infectious Diseases Contract HHSN272201400045C (to A.S.), NIH Grant R01 GM056414 (to S.H.G.), Lustgarten Foundation Award 388167 (to H.L.P.), inhibition of proteolysis enhances immunogenicity (7, 8). These Melanoma Research Alliance Award 51009 (to H.L.P.), and NIH Grant R01-AI087879 findings suggest that carefully introduced structural modifications (to H.L.P.). R.W.C. was supported in part by a Biotechnology Training Grant from the that forestall destruction of antigenic peptides might enhance National Institute of General Medical Sciences (T32 GM008349) and a Cancer Re- search Institute Postdoctoral Fellowship. A.W.W. was supported by a Beckman Institute immunogenicity (9). Postdoctoral Fellowship. MHC-I and MHC-II bind to an enormously diverse array of Address correspondence and reprint requests to Samuel H. Gellman or Hidde L. Ploegh, peptides. The impact of side chain identities at specific sites on Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (S.H.G.) binding to specific allomorphs of MHC products and subsequent or Boston Children’s Hospital, 1 Blackfan Circle, RB06215, Boston, MA 02115 (H.L.P.). E-mail addresses: [email protected] (S.H.G.) or [email protected] recognition by T cells has been extensively analyzed (10, 11). (H.L.P.) The development of compounds with selectivity among these The online version of this article contains supplemental material. allomorphs could be useful to address autoimmune disorders (12). Abbreviations used in this article: DC, dendritic cell; LC/MS, liquid chromatography/ In contrast, relatively little attention has been paid to changes mass spectrometry; MHC-I, class I MHC; MHC-II, class II MHC; MOG, myelin in the peptide backbone (13). Interactions between MHC-II and oligodendrocyte glycoprotein; TFA, trifluoroacetic acid. the peptide backbone are crucial for affinity and stability of Copyright Ó 2019 by The American Association of Immunologists, Inc. 0022-1767/19/$37.50 the peptide-MHC-II complex (14, 15). Only a few studies have www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900536 2 MHC-II PEPTIDE LIGANDS THAT CONTAIN b-AMINO ACIDS probed the impact of peptide backbone modifications on MHC Materials and Methods binding (16–22), with diverse outcomes. TCR recognition of peptide– General MHC complexes and the ensuing T cell responses are sensitive to Cell lines were routinely tested for cell surface marker expression peptide backbone modifications as well (23–30). and mycoplasma infection. Liquid chromatography/mass spectrometry Replacement of a-residues with b-amino acid counterparts has (LC/MS) was performed on a Waters Xevo TOF system equipped with an been used to probe the importance of peptide backbone structure HPLC-C8 column. Calculations and graphing were performed using in a variety of contexts (31, 32). Each a→b replacement adds a Microsoft Excel and GraphPad Prism 6. EC50 values were generated using carbon atom to the backbone compared with the analogous con- a sigmoidal dose-response with variable slope model (four-parameter model). Statistical significance was evaluated using a two-tailed, paired ventional peptide. Such replacements can retain the original side t test. chain. The incorporation of a b-amino acid residue provides pro- tection against proteolysis, at least for peptide bonds in proximity to Flow cytometry and Abs the site of incorporation (33–35). Carefully designed a/b-peptides For cytofluorimetry, gating was performed on viable cells based on forward (i.e., peptides containing a mixture of a-andb-residues) can mimic scatter and side scatter profiles. Fluorescently labeled Abs were purchased the conformations and biological properties of a-helical peptides, from eBioscience (anti-CD45.1, A20; anti-CD4, RM4-5; anti-CD11c, N418) or BioLegend (anti-CD45.2, 104; anti–I-A/I-E, M5/114.15.2). Prolifer- but the a/b-peptides display greater resistance to proteolysis and ation was assessed using the dye CellTrace Violet (Life Technologies) have prolonged activity in vivo (36–40).
Recommended publications
  • Development of VHH- and Antibody- Based
    Development of VHH- and Antibody- based Imaging and Diagnostic Tools by Zeyang Li Bachelor of Science in Biochemistry University of Wisconsin-Madison, WI, 2011 Submitted to the Department of Chemistry In Partial Fulfilment of the requirement for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 2018 2018 Massachusetts Institute of Technology All rights reserved Signature redacted Signature of Author........ Department of Chemistry 21 May 2018 Certified by.....................Signature redacted Hidde Ploegh OF TECHNOLOGY Senior Investigator Program in Cellular and Molecular Medicine JUN 2 0 Z018 At Boston Children's Hospital LIBRARIES ARCHIVES Signature redacted A cce pted by ....... .......................................... Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee for Graduate students This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: ............................Signature redacted ----- Barbara Imperiali Class of 1922 Professor of Biology and Chemistry MacVicar Faculty Fellow Thesis Committee Chair Signature redacted Hidde Ploegh Senior Investigator Program in Cellular and Molecular Medicine Boston Children's Hospital / Z" Thes;Supervisor Signature redacted Bradley L. Pentelute Pfizer-Laubach Career Development Professor of Chemistry Abstract The immune system distinguishes self from non-self to combat pathogenic incursions. Evasion tactics deployed by viruses, microbes, or malignant cells may impede an adequate response. In such cases, therapeutic interventions aid in the elimination of pathogens and the restoration of physiological homeostasis. A major road block in the development of such therapies is the reliance on imperfect detection methods to identify site(s) of infection, or to monitor immune cell recruitment to sites of infection or inflammation in vivo.
    [Show full text]
  • Cell Biology from an Immune Perspective in This Lecture We Will
    Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Cell Biology from an Immune Perspective In this lecture we will very briefly review some aspects of cell biology which are required as background knowledge in order to understand how the immune system works. These will include: 1. A brief overview of protein trafficking 2. Signal transduction 3. The cell cycle Some of these issues will be treated in greater depth in later lectures. Protein Trafficking/The Secretory Pathway: From an immune perspective the secretory compartment and structures enclosed by vesicles are “seen” in different ways from proteins that reside in the cytosol or the nucleus. We will briefly review the secretory and endocytic pathways and discuss the biogenesis of membrane proteins. Some of the issues that will be discussed are summarized in Figures 1-3. Early endosomes Late endosomes Lysosomes Golgi Vesiculo-Tubular Compartment ER Figure 1. An overview of the secretory pathway Early endosomes Late endosomes Multivesicular and multilamellar bodies Golgi ER Proteasomes Figure 2. Protein degradation occurs mainly in lysosomes and proteasomes Proteins that enter the cell from the environment are primarily degraded in lysosomes. Most cytosolic and nuclear proteins are degraded in organelles called proteasomes. Intriguingly these two sites of degradation are each functionally linked to distinct antigen presentation pathways, different kinds of MHC molecules and the activation of different categories of T cells. Integral membrane proteins maybe inserted into the membrane in a number of ways, the two most common of these ways being considered in Figure 3.
    [Show full text]
  • Optimized Fluorescent Labeling to Identify Memory B Cells Specific for Neisseria Meningitidis Serogroup B Vaccine Antigens Ex Vivo
    Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Nair, Nitya, Ludovico Buti, Elisa Faenzi, Francesca Buricchi, Sandra Nuti, Chiara Sammicheli, Simona Tavarini, et al. “ Optimized Fluorescent Labeling to Identify Memory B Cells Specific for Neisseria Meningitidis Serogroup B Vaccine Antigens Ex Vivo .” Immun. Inflamm. Dis. 1, no. 1 (October 2013): 3–13. As Published http://dx.doi.org/10.1002/iid3.3 Publisher Wiley Blackwell Version Final published version Citable link http://hdl.handle.net/1721.1/92523 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/3.0/ ORIGINAL RESEARCH Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo Nitya Nair1†, Ludovico Buti1,2‡, Elisa Faenzi1, Francesca Buricchi1, Sandra Nuti1, Chiara Sammicheli1, Simona Tavarini1, Maximilian W.L. Popp2,3,4, Hidde Ploegh2,4, Francesco Berti1, Mariagrazia Pizza1, Flora Castellino1, Oretta Finco1, Rino Rappuoli1, Giuseppe Del Giudice1, Grazia Galli1, & Monia Bardelli1 1Novartis Vaccines & Diagnostics, Siena, Italy 2Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 3University of Rochester, School of Medicine & Dentistry, Rochester, New York 4Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts Keywords Abstract Antigen-specific memory B cells, flow cytometry, Neisseria meningitidis MenB, Antigen-specific memory B cells generate anamnestic responses and high affinity sortagging, vaccination antibodies upon re-exposure to pathogens. Attempts to isolate rare antigen- specific memory B cells for in-depth functional analysis at the single-cell level have Correspondence been hindered by the lack of tools with adequate sensitivity.
    [Show full text]
  • Contents Research Illuminating the Interplay of Cancer and the Immune System July 2013 Volume 1 Issue 1
    Cancer Immunology Contents Research Illuminating the Interplay of Cancer and the Immune System July 2013 Volume 1 Issue 1 ANNOUNCEMENT CANCER IMMUNOLOGY MINIATURES 1 An Exciting Collaboration between 26 T Cells Expressing Chimeric Antigen AACR and CRI Receptors Can Cause Anaphylaxis in Humans EDITORIAL Marcela V. Maus, Andrew R. Haas, Gregory L. Beatty, Steven M. Albelda, Bruce L. Levine, Xiaojun Liu, Yangbing Zhao, 2 A Message from the Founding Michael Kalos, and Carl H. June Editor-in-Chief Glenn Dranoff Synopsis: Chimeric antigen receptor–expressing T cells (CAR-T cells) represent a promising, novel MASTERS OF IMMUNOLOGY form of adoptive immunotherapy to overcome tolerance to cancer. Using an intermittent dosing 5 Logic of the Immune System schedule of autologous CAR-T cells electroporated Hidde L. Ploegh with mRNA encoding a hybrid single chain molecule comprising the extracellular domain of CANCER IMMUNOLOGY AT THE murine monoclonal antibody against human mesothelin and the human transmembrane and CROSSROADS: FUNCTIONAL GENOMICS cytoplasmic T-cell signaling domains, Maus and colleagues characterized and reported a serious 11 Getting Personal with Neoantigen- adverse event that occurred in one of four patients Based Therapeutic Cancer Vaccines receiving repeated modified T-cell infusions, with Nir Hacohen, Edward F. Fritsch, Todd A. Carter, proposed modifications to address and minimize Eric S. Lander, and Catherine J. Wu future adverse occurrence. MEETING REPORT RESEARCH ARTICLES 16 Tumor Immunology: Multidisciplinary 32 Anti-CTLA-4 Antibodies of IgG2a Science Driving Basic and Clinical Isotype Enhance Antitumor Activity Advances through Reduction of Intratumoral Bridget P. Keenan, Elizabeth M. Jaffee, and Regulatory T Cells Todd D.
    [Show full text]
  • Qa-2–Dependent Selection of CD8 T Cell Receptor Cells in Murine
    Brief Definitive Report Qa-2–dependent Selection of CD8␣ր␣ T Cell Receptor ␣ր␤ϩ Cells in Murine Intestinal Intraepithelial Lymphocytes By Gobardhan Das,* Dina S. Gould,‡ Mathew M. Augustine,* Gladis Fragoso,¶ Edda Scitto,¶ Iwona Stroynowski,ʈ Luc Van Kaer,§ Danny J. Schust,‡ Hidde Ploegh,‡ and Charles A. Janeway, Jr.* From the *Section of Immunobiology, Yale University School of Medicine, and the Howard Hughes Medical Institute, New Haven, Connecticut 06520-8011; the ‡Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115; the §Department of Microbiology and Immunology and The Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; the ʈCenter for Immunology and the Department of Microbiology and the Department of Internal Medicine, Southwestern Medical Center, Dallas, Texas 75235-9093; and the ¶Department of Immunology, Instituto de Investigaciones Biomedicas, Universidad Nacional Avtonoma de Mexico, Mexico D.F. 04510 Abstract Murine intestinal intraepithelial lymphocytes (iIELs) are made up of a heterogeneous mix of T cells with unique phenotypes. Whereas CD8ϩ T cells in peripheral lymphoid organs use CD8␣ր␤ and are selected on MHC class Ia molecules, a majority of iIELs use CD8␣ր␣. Here, we report that the presence of CD8␣ր␣ TCR-␣ր␤ cells in iIELs is independent of classical MHC class I molecules Kb and Db, as illustrated by their presence in Kb/Db double-knockout mice and in mice lacking a nonclassical MHC class I molecule, CD1d. Most strikingly, their in mice lacking transporter associated with antigen processing %70ف presence is decreased by (TAP). The TAP-dependent nonclassical MHC class I molecule Qa-2 is strongly implicated in the presence of these cells, as inferred from the low numbers of CD8␣ր␣ TCR-␣ր␤ T cells in mice deficient in Qa-2 genes.
    [Show full text]
  • BCRP Brochure 2021 Class
    Boston Combined Residency Program This brochure describes the residency program as we assume it will -19 exist will in be JulyThe 2021, Pediatric by which time Residency authorities Training Program predict a vaccine to COVID of available. If thatBoston is not the Children’s case and the Hospital pandemic is still active, the program Harvard Medical School will be very similar but many of the and educational conferences and other group activities Bostonwill be virtual Medical instead Center Boston University School of Medicine of in-person, as they are today. August 2020 edi,on CLASS OF 2021.. BOSTON COMBINED RESIDENCY PROGRAM Boston Medical Center Boston Children’s Hospital CONTENTS History…………........................... 3 Rotation # descriptions.................. 47# Global health fellowships............ 84# BCRP…........................................ 3# Night call................................... 53# Global health grants………….… 84 # Boston Children’s Hospital........... 3# Longitudinal ambulatory.............. 54# Diversity and Inclusion................. 84# Boston Medical Center................. 8# Electives………………………….. 55# Salaries and benefits.................... 87# People……................................... 11 Individualized curriculum............ 56# Child care................................... 88# Program director biosketches...... 11# Academic development block.. 56# O$ce of fellowship training....... 88# Residency program leadership..... 12# Education.................................... 57# Cost of living..............................
    [Show full text]
  • Dendritic Cells Compartments in + Tubulation of Class II Requirements
    Requirements for T Cell-Polarized Tubulation of Class II + Compartments in Dendritic Cells This information is current as Nicolas Bertho, Jan Cerny, You-Me Kim, Edda Fiebiger, of October 1, 2021. Hidde Ploegh and Marianne Boes J Immunol 2003; 171:5689-5696; ; doi: 10.4049/jimmunol.171.11.5689 http://www.jimmunol.org/content/171/11/5689 Downloaded from References This article cites 39 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/171/11/5689.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Requirements for T Cell-Polarized Tubulation of Class II؉ Compartments in Dendritic Cells1 Nicolas Bertho,* Jan Cerny,†‡§ You-Me Kim,* Edda Fiebiger,* Hidde Ploegh,2* and Marianne Boes* Activation of naive CD4 T cells by dendritic cells requires the sequential interaction of many TCR molecules with peptide-class II complexes of the appropriate specificity.
    [Show full text]
  • A Herpesvirus Ubiquitin-Specific Protease Is Critical for Efficient T Cell Lymphoma Formation
    A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation Keith Jarosinski*, Lisa Kattenhorn†, Benedikt Kaufer*, Hidde Ploegh†‡, and Nikolaus Osterrieder*‡ *Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and †Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 Edited by Elliott D. Kieff, Harvard Medical School, Boston, MA, and approved October 29, 2007 (received for review July 5, 2007) The herpesvirus ubiquitin-specific protease (USP) family, whose symptoms and their clockwork timing, as well as the availability founding member was discovered as a protease domain embedded of the natural host, make MDV an ideal model to assess the in the large tegument protein of herpes simplex virus 1 (HSV-1), is importance of the viral USP for alphaherpesvirus pathogenesis conserved across all members of the Herpesviridae. Whether this in vivo. The course of infection includes lytic replication, then conservation is indicative of an essential function of the enzyme in latency, followed by reactivation and the formation of massive T vivo has not yet been established. As reported here, USP activity is cell lymphomas in multiple organs (18–20). We undertook the conserved in Marek’s disease virus (MDV), a tumorigenic alpha- generation of an MDV mutant that lacks the USP activity to herpesvirus. A single amino acid substitution that abolishes the address its role in pathogenicity. USP activity of the MDV large tegument protein diminishes MDV replication in vivo, and severely limits the oncogenic potential of Results the virus. Expression of the USP transcripts in MDV-transformed Characterization of the MDVUSP Active Site Cysteine.
    [Show full text]
  • Supporting Information
    Supporting Information Sanderson et al. 10.1073/pnas.1614472114 SI Materials and Methods verified expression at the establishment of the cell line and Mice and Primary Immune Cells. A full list of primary immune cells subsequently periodically checked the expression of the antigen − − used in the study is presented in Table S2. C57BL/6 and Rag / by immunofluorescence flow cytometry (see Table S1). Adherent mice were bred in the University of Basel Mouse Core Facility. cells were washed in PBS, trypsinized, resuspended in complete − − Tg(TcraTcrb)425Cbn (OT-II) mice on a Rag2 / background medium, washed in labeling buffer (PBS containing 2% FCS by were a kind gift from Ed Palmer, University of Basel. FluBI mice volume and 1 g/l of sodium azide), incubated for 30 min on ice in (23) were bred from founder members provided by Stephanie primary antibody, washed again, incubated with fluorescent Dougan and Hidde Ploegh, Whitehead Institute, Cambridge, secondary antibodies, washed, and measured on a BD LSR MA. IgHMOG (ref. 12; also known as Th B cells) and 2D2 mice Fortessa flow cytometer (BD Biosciences). Cells known to be (13) were bred from founder members provided by Guru positive and negative for the target antigen were labeled and Krishnamoorthy and Hartmut Wekerle, Max-Planck-Institut für measured in parallel each time. A typical result from such an Neurobiologie, Martinsried, Germany. Primary immune cells experiment is shown in Fig. 4E. When flow cytometry results are were obtained from spleens by mechanical disruption followed shown as contour plots, the contour lines are spaced at 10%. by brief settlement under gravity to remove tissue fragments.
    [Show full text]
  • Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells That Secrete Single-Domain Antibody Fragments
    Published OnlineFirst February 4, 2020; DOI: 10.1158/2326-6066.CIR-19-0734 CANCER IMMUNOLOGY RESEARCH | RESEARCH ARTICLE Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments Yushu Joy Xie1,2, Michael Dougan3, Jessica R. Ingram4,†, Novalia Pishesha1,2, Tao Fang1, Noor Momin2,5, and Hidde L. Ploegh1 ABSTRACT ◥ Chimeric antigen receptor (CAR) T-cell therapy is effective in the that can endow CAR T cells with desirable properties. The secretion treatment of cancers of hematopoietic origin. In the immunosup- of an anti-CD47 VHH by CAR T cells improves engagement of the pressive solid tumor environment, CAR T cells encounter obstacles innate immune system, enables epitope spreading, and can enhance that compromise their efficacy. We developed a strategy to address the antitumor response. CAR T cells that secrete anti–PD-L1 or these barriers by having CAR T cells secrete single-domain antibody anti–CTLA-4 nanobodies show improved persistence and demon- fragments [variable heavy domain of heavy chain antibodies (VHH) strate the versatility of this approach. Furthermore, local delivery of or nanobodies] that can modify the intratumoral immune landscape secreted anti-CD47 VHH-Fc fusions by CAR T cells at the tumor and thus support CAR T-cell function in immunocompetent ani- site limits their systemic toxicity. CAR T cells can be further mals. VHHs are small in size and able to avoid domain swapping engineered to simultaneously secrete multiple modalities, allowing when multiple nanobodies are expressed simultaneously—features for even greater tailoring of the antitumor immune response. Introduction cytokines such as IL12, IL15, and IL18 can modify the tumor micro- environment, make it more hospitable for T-cell activity, and thus Chimeric antigen receptor (CAR) T-cell therapy relies on T cells promote an antitumor response (9–11).
    [Show full text]
  • Engineered Erythrocytes Covalently Linked to Antigenic Peptides Can Protect Against Autoimmune Disease,” by Novalia Pishesha, Angelina M
    Correction IMMUNOLOGY AND INFLAMMATION Correction for “Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease,” by Novalia Pishesha, Angelina M. Bilate, Marsha C. Wibowo, Nai-Jia Huang, Zeyang Li, Rhogerry Dhesycka, Djenet Bousbaine, Hojun Li, Heide C. Patterson, Stephanie K. Dougan, Takeshi Maruyama, Harvey F. Lodish, and Hidde L. Ploegh, which appeared in issue 12, March 21, 2017, of Proc Natl Acad Sci USA (114: 3157–3162; first published March 7, 2017; 10.1073/pnas.1701746114). The authors note that the author name Rhogerry Dhesycka should instead appear as Rhogerry Deshycka. The corrected au- thor line appears below. The online version has been corrected. Novalia Pishesha, Angelina M. Bilate, Marsha C. Wibowo, Nai-Jia Huang, Zeyang Li, Rhogerry Deshycka, Djenet Bousbaine, Hojun Li, Heide C. Patterson, Stephanie K. Dougan, Takeshi Maruyama, Harvey F. Lodish, and Hidde L. Ploegh www.pnas.org/cgi/doi/10.1073/pnas.1705149114 CORRECTION www.pnas.org PNAS | April 25, 2017 | vol. 114 | no. 17 | E3583 Downloaded by guest on September 28, 2021 Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease Novalia Pisheshaa,b,c, Angelina M. Bilatea, Marsha C. Wibowoa,d, Nai-Jia Huanga, Zeyang Lia,c, Rhogerry Dhesyckaa,b, Djenet Bousbainea,c,d, Hojun Lia, Heide C. Pattersona, Stephanie K. Dougana, Takeshi Maruyamaa, Harvey F. Lodisha,b,d,1, and Hidde L. Ploegha,c,d,1,2 aWhitehead Institute for Biomedical Research, Cambridge, MA 02142; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142; cProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; and dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142 Contributed by Hidde L.
    [Show full text]
  • Front Matter (PDF)
    AAI ANNUAL MEETING ANNUAL AAI PROGRAM PREVIEW ISSUE PREVIEW PROGRAM TH 97 Volume 184 l No. 6 l March 15, 2010 184 l No. 6 l March Volume www.jimmunol.org THE journal OF Immunology VOL. 184 | NO. 6 | March 15, 2010 | Pages 2741–3300 PROGRAM PREVIEW MIMMUNOLOGYMUNOLOG 2010YTM Important Links For program updates and complete meeting information, visit Online Registration www.IMMUNOLOGY2010.org/Registration.htm www.IMMUNOLOGY2010.org Hotel Reservations www.IMMUNOLOGY2010.org/Housing.htm International Attendees www.IMMUNOLOGY2010.org/Visa.htm THE AMERICAN ASSOCIATION OF IMMUNOLOGISTS | 97th ANNUAL MEETING May 7–11, 2010 | Baltimore Convention Center | Baltimore, Maryland | www.immunology2010.org IMMUNOLOGY 2010™ 97th Annual Meeting The American Association See you in Baltimore! of Immunologists All activities for the meeting will be held at the Baltimore May 7–11, 2010 N Baltimore, Maryland Baltimore Convention Center Convention Center (BCC) unless otherwise noted. www.immunology2010.org AAI PRESIDENT’S PROGRAM AAI President’s Address Presentation of AAI Lifetime FRIDAY, MAY 7 N 5:00 PM Achievement Award BCC BALLROOM I & II SATURDAY, MAY 8 N 5:00 PM N BCC BALLROOM I & II Betty A. Diamond, The Feinstein Institute for Chair: Betty A. Diamond, The Feinstein Institute Medical Research, AAI President for Medical Research, AAI President Antibodies and the brain: Award Recipient: Susan L. Swain lessons from lupus Trudeau Institute Matthew D. Scharff, Albert Einstein College The AAI Lifetime Achievement Award is the of Medicine, Introduction highest honor bestowed by the AAI Council upon an AAI member. This award recognizes Presentation of AAI Excellence a deserving member for a career of scientific in Mentoring Award achievement and for contributions to AAI and MONDAY, MAY 10 N 2:30 PM N BCC BALLROOM I & II fellow immunologists.
    [Show full text]