Antigen Presentation Impairment of HLA Class I-Restricted Associated

Total Page:16

File Type:pdf, Size:1020Kb

Antigen Presentation Impairment of HLA Class I-Restricted Associated Specific Targeting of the EBV Lytic Phase Protein BNLF2a to the Transporter Associated with Antigen Processing Results in Impairment of HLA Class I-Restricted This information is current as Antigen Presentation of September 26, 2021. Daniëlle Horst, Daphne van Leeuwen, Nathan P. Croft, Malgorzata A. Garstka, Andrew D. Hislop, Elisabeth Kremmer, Alan B. Rickinson, Emmanuel J. H. J. Wiertz and Maaike E. Ressing Downloaded from J Immunol 2009; 182:2313-2324; ; doi: 10.4049/jimmunol.0803218 http://www.jimmunol.org/content/182/4/2313 http://www.jimmunol.org/ References This article cites 67 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/182/4/2313.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Specific Targeting of the EBV Lytic Phase Protein BNLF2a to the Transporter Associated with Antigen Processing Results in Impairment of HLA Class I-Restricted Antigen Presentation1 Danie¨lle Horst,*§ Daphne van Leeuwen,* Nathan P. Croft,† Malgorzata A. Garstka,* Andrew D. Hislop,† Elisabeth Kremmer,‡ Alan B. Rickinson,† Emmanuel J. H. J. Wiertz,*§ and Maaike E. Ressing2*§ EBV persists for life in the human host while facing vigorous antiviral responses that are induced upon primary infection. This persistence supports the idea that herpesviruses have acquired dedicated functions to avoid immune elimination. The recently Downloaded from identified EBV gene product BNLF2a blocks TAP. As a result, reduced amounts of peptides are transported by TAP from the cytoplasm into the endoplasmic reticulum (ER) lumen for binding to newly synthesized HLA class I molecules. Thus, BNLF2a perturbs detection by cytotoxic T cells. The 60-aa-long BNLF2a protein prevents the binding of both peptides and ATP to TAP, yet further mechanistic insight is, to date, lacking. In this study, we report that EBV BNLF2a represents a membrane-associated protein that colocalizes with its target TAP in subcellular compartments, primarily the ER. In cells devoid of TAP, expression levels of BNLF2a protein are greatly diminished, while ER localization of the remaining BNLF2a is retained. For interactions of http://www.jimmunol.org/ BNLF2a with the HLA class I peptide-loading complex, the presence of TAP2 is essential, whereas tapasin is dispensible. Im- portantly, we now show that in B cells supporting EBV lytic replication, the BNLF2a protein is expressed early in infection, colocalizing and associating with the peptide-loading complex. These results imply that, during productive EBV infection, BNLF2a contributes to TAP inhibition and surface HLA class I down-regulation. In this way, EBV BNLF2a-mediated evasion from HLA class I-restricted T cell immunity contributes to creating a window for undetected virus production. The Journal of Immunology, 2009, 182: 2313–2324. ytotoxic T lymphocytes play an essential role in the con- minal domains for the binding of peptide substrates and ATP. To by guest on September 26, 2021 trol of many viral infections. Through their TCRs, CD8ϩ ensure efficient acquisition of optimal peptide cargo by nascent C CTLs scrutinize body cells for the presence of intracel- MHC class I complexes, TAP is part of the MHC class I peptide- lular foreign invaders reflected at the cell surface by virus-derived loading complex (PLC). Besides TAP1 and TAP2, the PLC com- ␤ ␤ peptides bound to host MHC class I molecules (HLA in humans). prises MHC class I H chains, 2-microglobulin ( 2m), tapasin, In general, these peptides result from protein degradation by cy- ERp57, and the chaperone calreticulin. Tapasin bridges TAP and tosolic proteasomes and are then transported into the endoplasmic MHC class I molecules and stabilizes TAP expression (1, 2). The reticulum (ER)3 lumen by the transporter associated with Ag pro- complex of tapasin and the thiol oxidoreductase ERp57 exerts a pep- cessing, TAP. TAP is a heterodimer composed of two multimem- tide-editing function (3, 4). Once newly synthesized MHC class I H ␤ brane-spanning subunits, TAP1 and TAP2, with cytosolic C-ter- chain/ 2m/peptide trimers are assembled, they are allowed to exit the ER and travel through the Golgi to the cell surface. Even in the face of functional antiviral immune responses, her- *Department of Medical Microbiology, Center of Infectious Diseases, Leiden Uni- pesviruses are capable of establishing lifelong persistent infections versity Medical Center, Leiden, The Netherlands; †Cancer Research UK Institute for in their hosts. This hallmark is shared by all members of the her- Cancer Studies and Medical Research Council Centre for Immune Regulation, Uni- pesvirus family, classified into ␣-, ␤-, and ␥-subfamilies. The past versity of Birmingham, Edgbaston, Birmingham, United Kingdom; ‡Institute of Mo- lecular Immunology, Helmholtz Zentrum, Munich, Germany; and §Department of decade has provided ample evidence that herpesviruses have ac- Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands quired gene products that thwart host antiviral responses (5–8). Received for publication September 25, 2008. Accepted for publication December Prominent among these are viral proteins that interfere with MHC 10, 2008. class I-restricted Ag presentation at various locations along the Ag The costs of publication of this article were defrayed in part by the payment of page processing route. For example, MHC class I molecules are retained charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. intracellularly in cells infected with both human and murine CMV ␤ 1 These studies have been financially supported by Dutch Cancer Foundation Grant (HCMV and MCMV, respectively; both -herpesviruses). To RUL 2005-3259, Royal Dutch Academy of Sciences Beijerinck Premium 2005, and achieve this, the HCMV US3 protein prevents the exit of MHC the Netherlands Scientific Organization (NWO) Vidi Grant 917.76.330. class I molecules from the ER in a tapasin-dependent manner (9, 2 Address correspondence and reprint requests to Dr. Maaike E. Ressing, Department 10), and in MCMV m152/gp40 is responsible for the retention of of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands. E-mail address: [email protected] 3 Abbreviations used in this paper: ER, endoplasmic reticulum; AEBSF, 4-(2-amin- NGFR, truncated nerve growth factor receptor; PDI, protein disulfide isomerase; PLC, ␤ ␤ oethyl)benzenesulfonyl fluoride; 2m, 2-microglobulin; BHV, bovine herpesvirus; peptide-loading complex. HCMV, human CMV; IRES, internal ribosomal entry site; HA, hemagglutinin; KO, knockout; LCL, lymphoblastoid cell line; MCMV, murine CMV; MJS, MelJuSo; Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 www.jimmunol.org/cgi/doi/10.4049/jimmunol.0803218 2314 TAP INHIBITION BY THE EBV-ENCODED LYTIC PHASE PROTEIN BNLF2a MHC class I in the ER-Golgi intermediate compartment (11). An B cells when compared with cells harboring a latent EBV infec- alternative strategy of MHC class I immune evasion adopted by tion, and this coincides with a block in TAP-mediated peptide several viruses is the acceleration of MHC class I turnover. In cells transport (41). Subsequently, we identified BNLF2a as an EBV expressing the HCMV US2 or US11 proteins, MHC class I mol- lytic cycle protein capable of blocking TAP function by interfering ecules are degraded rapidly upon synthesis and, interestingly, this with binding of both peptides and of ATP to TAP (42). Functional occurs by proteasomes following the dislocation of MHC class I homologues of EBV BNLF2a were found in Old World primate ␥ ␥ molecules into the cytosol (12, 13). Increased degradation of MHC 1-herpesviruses. Thus, -herpesviruses also appear to encode im- class I molecules is also achieved by viral E3 ubiquitin ligases mune evasion molecules specifically targeting peptide transport encoded by two members of the ␥-herpesvirus subfamily. The mu- by TAP. rine ␥-herpesvirus MHV68 encodes mK3, the expression of which In this article, we report novel mechanistic aspects of the EBV- leads to proteasomal degradation of MHC class I as well as other encoded BNLF2a protein, representing the first dedicated inhibitor components of the PLC (14–18). The human Kaposi sarcoma- of TAP in ␥-herpesviruses, and we provide evidence for its role associated herpesvirus expresses two proteins, K3 and K5, that during natural EBV infection. target MHC class I molecules for proteolysis at a different location compared with mK3, i.e., in lysosomes following endocytosis Materials and Methods (19–21). Enhanced lysosomal degradation is also effected by two Antibodies ␤-herpesvirus
Recommended publications
  • NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development
    Review NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development Calum Forrest 1 , Ariane Gomes 1 , Matthew Reeves 1,* and Victoria Male 2,* 1 Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; [email protected] (C.F.); [email protected] (A.G.) 2 Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK * Correspondence: [email protected] (M.R.); [email protected] (V.M.) Received: 24 June 2020; Accepted: 15 July 2020; Published: 20 July 2020 Abstract: Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
    [Show full text]
  • Case of the Anti HIV-1 Antibody, B12
    Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Roland Strong, Chair Nancy Maizels Jessica A. Hamerman Program Authorized to Offer Degree: Molecular and Cellular Biology i ii ©Copyright 2015 Mesfin Mulugeta Gewe iii University of Washington Abstract Spectrum of Somatic Hypermutations and Implication on Antibody Function: Case of the anti HIV-1 antibody, b12 Mesfin Mulugeta Gewe Chair of the Supervisory Committee: Roland Strong, Full Member Fred Hutchinson Cancer Research Center Sequence diversity, ability to evade immune detection and establishment of human immunodeficiency virus type 1 (HIV-1) latent reservoirs present a formidable challenge to the development of an HIV-1 vaccine. Structure based vaccine design stenciled on infection elicited broadly neutralizing antibodies (bNAbs) is a promising approach, in some measure to circumvent existing challenges. Understanding the antibody maturation process and importance of the high frequency mutations observed in anti-HIV-1 broadly neutralizing antibodies are imperative to the success of structure based vaccine immunogen design. Here we report a biochemical and structural characterization for the affinity maturation of infection elicited neutralizing antibodies IgG1 b12 (b12). We investigated the importance of affinity maturation and mutations accumulated therein in overall antibody function and their potential implications to vaccine development. Using a panel of point iv reversions, we examined relevance of individual amino acid mutations acquired during the affinity maturation process to deduce the role of somatic hypermutation in antibody function.
    [Show full text]
  • Development of VHH- and Antibody- Based
    Development of VHH- and Antibody- based Imaging and Diagnostic Tools by Zeyang Li Bachelor of Science in Biochemistry University of Wisconsin-Madison, WI, 2011 Submitted to the Department of Chemistry In Partial Fulfilment of the requirement for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 2018 2018 Massachusetts Institute of Technology All rights reserved Signature redacted Signature of Author........ Department of Chemistry 21 May 2018 Certified by.....................Signature redacted Hidde Ploegh OF TECHNOLOGY Senior Investigator Program in Cellular and Molecular Medicine JUN 2 0 Z018 At Boston Children's Hospital LIBRARIES ARCHIVES Signature redacted A cce pted by ....... .......................................... Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee for Graduate students This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: ............................Signature redacted ----- Barbara Imperiali Class of 1922 Professor of Biology and Chemistry MacVicar Faculty Fellow Thesis Committee Chair Signature redacted Hidde Ploegh Senior Investigator Program in Cellular and Molecular Medicine Boston Children's Hospital / Z" Thes;Supervisor Signature redacted Bradley L. Pentelute Pfizer-Laubach Career Development Professor of Chemistry Abstract The immune system distinguishes self from non-self to combat pathogenic incursions. Evasion tactics deployed by viruses, microbes, or malignant cells may impede an adequate response. In such cases, therapeutic interventions aid in the elimination of pathogens and the restoration of physiological homeostasis. A major road block in the development of such therapies is the reliance on imperfect detection methods to identify site(s) of infection, or to monitor immune cell recruitment to sites of infection or inflammation in vivo.
    [Show full text]
  • The T Cell Repertoire Specific for the IE-1 Protein of Human Cytomegalovirus: Diversity, Function and Evasion
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München The T cell repertoire specific for the IE-1 protein of human cytomegalovirus: diversity, function and evasion von Stefanie Maria Ameres aus Deggendorf, Deutschland 2012 Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Wolfgang Hammerschmidt betreut und von Herrn Prof. Dr. Horst Domdey vor der Fakultät für Chemie und Pharmazie vertreten. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, den 03.07.2012 Stefanie Ameres Dissertation eingereicht am 03.07.2012 1. Gutachter: Prof. Dr. Horst Domdey 2. Gutachter: Prof. Dr. Wolfgang Hammerschmidt Mündliche Prüfung am 28.01.2013 Teile dieser Arbeit werden/wurden wie folgt veröffentlicht: Ameres, S., J. Mautner, F. Schlott, M. Neuenhahn, D.H. Busch, B. Plachter, and A. Moosmann. Antigen Presentation to an Immunodominant Population of HLA-C-Restricted T Cells Resists Cytomegalovirus Immunoevasion. 2nd revision PLOS Pathogens Hesse, J., S. Ameres, K. Besold, S. Krauter, A. Moosmann, and B. Plachter. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. Epub oct 2012. J. Gen. Virol. Teile dieser Arbeit wurden im Rahmen der Dissertation wie folgt präsentiert: May 3rd–4th, 2012 DFG SFB-TR36 Symposium "Adoptive T Cell Therapy" Berlin, Germany Talk: "CD8+ T cells overcome HCMV immunoevasion dependent on their HLA restriction" Dec. 5th–7th, 2011 DFG SFB-TR36 Retreat "Principles and Applications of Wildbad Kreuth, Adoptive T Cell therapy" Germany Talk: "CD8+ T cells defeat HCMV immunoevasins dependent on MHC restriction" May 14th–17th, 2011 13th International CMV/Betaherpesvirus Workshop Nürnberg, Germany Poster 1: "Preferential T cell control of HCMV infection through HLA-C" Poster 2: "HCMV IE-1 is recognized by a diverse repertoire of CD4+ Tcells" Oct.
    [Show full text]
  • Structural Basis of Mouse Cytomegalovirus M152/Gp40 Interaction with Rae1γ Reveals a Paradigm for MHC/MHC Interaction in Immune
    Structural basis of mouse cytomegalovirus m152/gp40 PNAS PLUS interaction with RAE1γ reveals a paradigm for MHC/MHC interaction in immune evasion Rui Wanga, Kannan Natarajana, Maria Jamela R. Revillezaa, Lisa F. Boyda, Li Zhia,1, Huaying Zhaob, Howard Robinsonc, and David H. Marguliesa,2 aMolecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; bDynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomolecular Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; and cNational Synchrotron Light Source, Brookhaven National Laboratories, Upton, NY 11973 Edited by K. Christopher Garcia, Stanford University, Stanford, CA, and approved October 24, 2012 (received for review August 17, 2012) Natural killer (NK) cells are activated by engagement of the NKG2D NKG2D ligands, we examined the binding of the MCMV m152 receptor with ligands on target cells stressed by infection or glycoprotein to its RAE1 ligands. Our previous studies investigated tumorigenesis. Several human and rodent cytomegalovirus (CMV) the quantitative interaction of m152 with different RAE1 isoforms immunoevasins down-regulate surface expression of NKG2D (21). Here we report the X-ray structure of the complex of m152 ligands. The mouse CMV MHC class I (MHC-I)–like m152/gp40 glyco- with RAE1γ, the confirmation of the intermolecular contacts protein down-regulates retinoic acid early inducible-1 (RAE1) observed in the crystal structure by site-directed mutagenesis and NKG2D ligands as well as host MHC-I. Here we describe the crystal in vitro binding assays, a comparison of the binding of m152 to structure of an m152/RAE1γ complex and confirm the intermolec- RAE1 and of NKG2D to RAE1, and the functional effects of ular contacts by mutagenesis.
    [Show full text]
  • Cell Biology from an Immune Perspective in This Lecture We Will
    Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Cell Biology from an Immune Perspective In this lecture we will very briefly review some aspects of cell biology which are required as background knowledge in order to understand how the immune system works. These will include: 1. A brief overview of protein trafficking 2. Signal transduction 3. The cell cycle Some of these issues will be treated in greater depth in later lectures. Protein Trafficking/The Secretory Pathway: From an immune perspective the secretory compartment and structures enclosed by vesicles are “seen” in different ways from proteins that reside in the cytosol or the nucleus. We will briefly review the secretory and endocytic pathways and discuss the biogenesis of membrane proteins. Some of the issues that will be discussed are summarized in Figures 1-3. Early endosomes Late endosomes Lysosomes Golgi Vesiculo-Tubular Compartment ER Figure 1. An overview of the secretory pathway Early endosomes Late endosomes Multivesicular and multilamellar bodies Golgi ER Proteasomes Figure 2. Protein degradation occurs mainly in lysosomes and proteasomes Proteins that enter the cell from the environment are primarily degraded in lysosomes. Most cytosolic and nuclear proteins are degraded in organelles called proteasomes. Intriguingly these two sites of degradation are each functionally linked to distinct antigen presentation pathways, different kinds of MHC molecules and the activation of different categories of T cells. Integral membrane proteins maybe inserted into the membrane in a number of ways, the two most common of these ways being considered in Figure 3.
    [Show full text]
  • Optimized Fluorescent Labeling to Identify Memory B Cells Specific for Neisseria Meningitidis Serogroup B Vaccine Antigens Ex Vivo
    Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Nair, Nitya, Ludovico Buti, Elisa Faenzi, Francesca Buricchi, Sandra Nuti, Chiara Sammicheli, Simona Tavarini, et al. “ Optimized Fluorescent Labeling to Identify Memory B Cells Specific for Neisseria Meningitidis Serogroup B Vaccine Antigens Ex Vivo .” Immun. Inflamm. Dis. 1, no. 1 (October 2013): 3–13. As Published http://dx.doi.org/10.1002/iid3.3 Publisher Wiley Blackwell Version Final published version Citable link http://hdl.handle.net/1721.1/92523 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/3.0/ ORIGINAL RESEARCH Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo Nitya Nair1†, Ludovico Buti1,2‡, Elisa Faenzi1, Francesca Buricchi1, Sandra Nuti1, Chiara Sammicheli1, Simona Tavarini1, Maximilian W.L. Popp2,3,4, Hidde Ploegh2,4, Francesco Berti1, Mariagrazia Pizza1, Flora Castellino1, Oretta Finco1, Rino Rappuoli1, Giuseppe Del Giudice1, Grazia Galli1, & Monia Bardelli1 1Novartis Vaccines & Diagnostics, Siena, Italy 2Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 3University of Rochester, School of Medicine & Dentistry, Rochester, New York 4Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts Keywords Abstract Antigen-specific memory B cells, flow cytometry, Neisseria meningitidis MenB, Antigen-specific memory B cells generate anamnestic responses and high affinity sortagging, vaccination antibodies upon re-exposure to pathogens. Attempts to isolate rare antigen- specific memory B cells for in-depth functional analysis at the single-cell level have Correspondence been hindered by the lack of tools with adequate sensitivity.
    [Show full text]
  • Contents Research Illuminating the Interplay of Cancer and the Immune System July 2013 Volume 1 Issue 1
    Cancer Immunology Contents Research Illuminating the Interplay of Cancer and the Immune System July 2013 Volume 1 Issue 1 ANNOUNCEMENT CANCER IMMUNOLOGY MINIATURES 1 An Exciting Collaboration between 26 T Cells Expressing Chimeric Antigen AACR and CRI Receptors Can Cause Anaphylaxis in Humans EDITORIAL Marcela V. Maus, Andrew R. Haas, Gregory L. Beatty, Steven M. Albelda, Bruce L. Levine, Xiaojun Liu, Yangbing Zhao, 2 A Message from the Founding Michael Kalos, and Carl H. June Editor-in-Chief Glenn Dranoff Synopsis: Chimeric antigen receptor–expressing T cells (CAR-T cells) represent a promising, novel MASTERS OF IMMUNOLOGY form of adoptive immunotherapy to overcome tolerance to cancer. Using an intermittent dosing 5 Logic of the Immune System schedule of autologous CAR-T cells electroporated Hidde L. Ploegh with mRNA encoding a hybrid single chain molecule comprising the extracellular domain of CANCER IMMUNOLOGY AT THE murine monoclonal antibody against human mesothelin and the human transmembrane and CROSSROADS: FUNCTIONAL GENOMICS cytoplasmic T-cell signaling domains, Maus and colleagues characterized and reported a serious 11 Getting Personal with Neoantigen- adverse event that occurred in one of four patients Based Therapeutic Cancer Vaccines receiving repeated modified T-cell infusions, with Nir Hacohen, Edward F. Fritsch, Todd A. Carter, proposed modifications to address and minimize Eric S. Lander, and Catherine J. Wu future adverse occurrence. MEETING REPORT RESEARCH ARTICLES 16 Tumor Immunology: Multidisciplinary 32 Anti-CTLA-4 Antibodies of IgG2a Science Driving Basic and Clinical Isotype Enhance Antitumor Activity Advances through Reduction of Intratumoral Bridget P. Keenan, Elizabeth M. Jaffee, and Regulatory T Cells Todd D.
    [Show full text]
  • The Murine Cytomegalovirus Immunoevasin Gp40 Binds MHC
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 219-227 doi:10.1242/jcs.175620 RESEARCH ARTICLE The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway Linda Janßen1, Venkat Raman Ramnarayan1, Mohamed Aboelmagd1, Maro Iliopoulou1, Zeynep Hein1, Irina Majoul2, Susanne Fritzsche1, Anne Halenius3 and Sebastian Springer1,* ABSTRACT ERGIC or cis-Golgi, and we demonstrate that a sequence in the In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) linker between the folded lumenal domain of gp40 and the protein, murine major histocompatibility complex (MHC) class I transmembrane sequence is required for this retention. molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not RESULTS impair the folding or high-affinity peptide binding of the class I Gp40 retains MHC class I in the early secretory pathway molecules but binds to them, leading to their retention in the To assess the effect of gp40 on murine class I molecules, we m152 endoplasmic reticulum (ER), the ER-Golgi intermediate compartment expressed in K41 cells (murine fibroblasts) by lentiviral (ERGIC) and the cis-Golgi, most likely by retrieval from the cis-Golgi to transduction. The surface levels of the endogenous class I allotypes b b b b the ER. We identify a sequence in gp40 that is required for both its own H-2D (D ) and H-2K (K ) were reduced to background levels in retention in the early secretory pathway and for that of class I most cells, as observed by flow cytometry with the allotype-specific β b molecules.
    [Show full text]
  • Epstein-Barr Virus May Contribute to Central Nervous System Involvement in HIV-Positive Individuals
    bioRxiv preprint doi: https://doi.org/10.1101/341354; this version posted June 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Epstein-Barr Virus May Contribute to Central Nervous System Involvement in HIV-positive 2 Individuals 3 Lupia T1#*, Milia MG2, Atzori C3, Audagnotto S1, Imperiale D3, Mighetto L4, Pirriatore V1, Gregori G2, 4 Lipani F1, Ghisetti V2, Bonora S1, Di Perri G1, Calcagno A1. 5 1 Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy 6 2 Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL “Città di Torino”, 7 Torino, Italy 8 3 Unit of Neurology, Ospedale Maria Vittoria, ASL “Città di Torino”, Torino, Italy 9 4 Laboratory of Immunology, Ospedale Maria Vittoria, ASL “Città di Torino”, Torino, Italy. 10 11 Running Head: EBV and HIV in the CSF 12 13 14 #Address correspondence to Tommaso Lupia, [email protected] 15 *Present address: Tommaso Lupia, Unit of Infectious Diseases, Department of Medical Sciences, 16 University of Torino, Amedeo di Savoia Hospital, C.so Svizzera 164, 10149 Torino, Italy 17 18 19 20 Type of article: Original article 21 22 Key words: EBV; HIV; central nervous system; blood brain barrier; trafficking; biomarkers; S-100 23 beta. 24 25 Word count: Total 2097 (Abstract 250) 26 27 Figures: 3 28 29 Tables: 2 30 31 32 Conflicts of Interest and Source of Funding: AC has received honoraria from Abbvie, BMS, Gilead, 33 Janssen-Cilag, MSD, Viiv and he is currently receiving research grants from BMS, Gilead and Viiv.
    [Show full text]
  • Amino Acids Ross W
    Recognition of Class II MHC Peptide Ligands That Contain β-Amino Acids Ross W. Cheloha, Andrew W. Woodham, Djenet Bousbaine, Tong Wang, Shi Liu, John Sidney, Alessandro Sette, Samuel This information is current as H. Gellman and Hidde L. Ploegh of October 2, 2021. J Immunol published online 7 August 2019 http://www.jimmunol.org/content/early/2019/08/06/jimmun ol.1900536 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/08/06/jimmunol.190053 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 7, 2019, doi:10.4049/jimmunol.1900536 The Journal of Immunology Recognition of Class II MHC Peptide Ligands That Contain b-Amino Acids Ross W. Cheloha,* Andrew W. Woodham,* Djenet Bousbaine,*,† Tong Wang,‡ Shi Liu,‡ John Sidney,x Alessandro Sette,x,{ Samuel H.
    [Show full text]
  • Qa-2–Dependent Selection of CD8 T Cell Receptor Cells in Murine
    Brief Definitive Report Qa-2–dependent Selection of CD8␣ր␣ T Cell Receptor ␣ր␤ϩ Cells in Murine Intestinal Intraepithelial Lymphocytes By Gobardhan Das,* Dina S. Gould,‡ Mathew M. Augustine,* Gladis Fragoso,¶ Edda Scitto,¶ Iwona Stroynowski,ʈ Luc Van Kaer,§ Danny J. Schust,‡ Hidde Ploegh,‡ and Charles A. Janeway, Jr.* From the *Section of Immunobiology, Yale University School of Medicine, and the Howard Hughes Medical Institute, New Haven, Connecticut 06520-8011; the ‡Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115; the §Department of Microbiology and Immunology and The Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232; the ʈCenter for Immunology and the Department of Microbiology and the Department of Internal Medicine, Southwestern Medical Center, Dallas, Texas 75235-9093; and the ¶Department of Immunology, Instituto de Investigaciones Biomedicas, Universidad Nacional Avtonoma de Mexico, Mexico D.F. 04510 Abstract Murine intestinal intraepithelial lymphocytes (iIELs) are made up of a heterogeneous mix of T cells with unique phenotypes. Whereas CD8ϩ T cells in peripheral lymphoid organs use CD8␣ր␤ and are selected on MHC class Ia molecules, a majority of iIELs use CD8␣ր␣. Here, we report that the presence of CD8␣ր␣ TCR-␣ր␤ cells in iIELs is independent of classical MHC class I molecules Kb and Db, as illustrated by their presence in Kb/Db double-knockout mice and in mice lacking a nonclassical MHC class I molecule, CD1d. Most strikingly, their in mice lacking transporter associated with antigen processing %70ف presence is decreased by (TAP). The TAP-dependent nonclassical MHC class I molecule Qa-2 is strongly implicated in the presence of these cells, as inferred from the low numbers of CD8␣ր␣ TCR-␣ր␤ T cells in mice deficient in Qa-2 genes.
    [Show full text]