'Gemlik' Olive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Change in Quality During Ripening of Olive Fruits and Related Oils Extracted from Three Minor Autochthonous Sardinian Cultivars
Emirates Journal of Food and Agriculture. 2019. 31(3): 196-205 doi: 10.9755/ejfa.2019.v31.i3.1923 http://www.ejfa.me/ RESEARCH ARTICLE Change in quality during ripening of olive fruits and related oils extracted from three minor autochthonous Sardinian cultivars Paola Conte1, Giacomo Squeo2, Graziana Difonzo2, Francesco Caponio2, Costantino Fadda1, Alessandra Del Caro1, Pietro Paolo Urgeghe1, Luigi Montanari1, Antonio Montinaro3, Antonio Piga1* 1Dipartimento di Agraria, Università Degli Studi di Sassari, Viale Italia 39/A, 07100 Sassari, Italy, 2Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Sezione di Scienze e Tecnologie Alimentari, Università Degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy, 3LAORE Sardegna, Servizio Sviluppo delle filiere vegetali, Unità organizzativa tematica territoriale Produzioni vegetali ATO 2, Via Baldedda 11, 07100 Sassari, Italy ABSTRACT Ripening stage is one of the key factors in determining quality of olive fruits and related oils. This research, thus, was aimed to study the influence of three different harvesting times on the quality parameters of olives and related oils of three autochthonous Sardinian cultivars, Sivigliana da olio, Semidana, and Corsicana da olio. We evaluated several parameters in olive fruits (dry matter, oil content, total soluble solids, total polyphenol and antioxidant activity) and oils (legal indices, total chlorophylls and tocopherols, single polyphenols and volatile compounds, antioxidant activity). The results obtained in olive fruits showed that all the parameters changed significantly during ripening and seem to confirm that the best harvesting time is that selected by the growers, that is when 70% of olives has just turned dark-colored and the rest is green. -
UC Davis UC Davis Previously Published Works
UC Davis UC Davis Previously Published Works Title Reducing Phenolics Related to Bitterness in Table Olives Permalink https://escholarship.org/uc/item/66x5590m Authors Johnson, RL Mitchell, AE Publication Date 2018 DOI 10.1155/2018/3193185 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Hindawi Journal of Food Quality Volume 2018, Article ID 3193185, 12 pages https://doi.org/10.1155/2018/3193185 Review Article Reducing Phenolics Related to Bitterness in Table Olives Rebecca L. Johnson and Alyson E. Mitchell Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA Correspondence should be addressed to Alyson E. Mitchell; [email protected] Received 21 May 2018; Revised 9 July 2018; Accepted 24 July 2018; Published 13 August 2018 Academic Editor: Amani Taamalli Copyright © 2018 Rebecca L. Johnson and Alyson E. Mitchell. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Olives are one of the oldest food products in human civilization. Over the centuries, numerous methods have been developed to transform olives from a bitter drupe into an edible fruit. Methods of processing table olives rely on the acid, base, and/or enzymatic hydrolysis of bitter phenolic compounds naturally present in the fruit into nonbitter hydrolysis products. Today, there are three primary methods of commercial table olive processing: the Greek, Spanish, and Californian methods, in addition to several Artisanal methods. is review focuses on the technological, microbiological, chemical, and sensory aspects of table olive processing and the inherent benets and drawbacks of each method. -
1. Description Générale De L'oléiculture À Malte 1.1
Politique - Malte 2012 1. DESCRIPTION GÉNÉRALE DE L'OLÉICULTURE À MALTE 1.1. Introduction L'oléiculture est présente sur toutes les îles maltaises. Les oliviers sont dispersés, plantés comme brise-vent ou cultivés avec d'autres fruitiers. Cette distribution irrégulière est due à la nature fragmentée et peu étendue des exploitations agricoles. Les plantations sont de superficies très diverses, parfois de seulement 0,1 ha, avec une densité moyenne d'environ 300 à 400 arbres/ha. En 2010, Malte comptait 138 ha consacrés à l'oléiculture. Figure 1. Situation géographique de Malte (Source : NU) (Source : questionnaire du COI) 1.2. Indicateurs socio-économiques • Superficie : 316 km² (NU, 2008) • Capitale : Valletta (NU) • Monnaie : Euro (EUR) (NU, 2009) • Population : 414 971 habitants (Banque mondiale, 2009) • Population urbaine : 95 % (Banque mondiale, 2010) • Population rurale : 5 % (Banque mondiale, 2010) • Taux de croissance de la population : 0,3 % (NU, 2010/15) • Espérance de vie : 82,0 ans (hommes), 78,4 ans (femmes) (NU, 2010/15) • Principales exportations en volume : maïs (FAOSTAT, 2009) • Principales importations en volume : maïs (FAOSTAT, 2009) • RNB par habitant, PPA (en US $ courants) : 23 160 (Banque mondiale, 2009) • PIB par habitant, PPA (en US $ courants) : 24 804 (Banque mondiale, 2009) • Emplois dans l’agriculture : 1,4 % (Banque mondiale, 2008) • Femmes employées dans l'agriculture : 0 % (Banque mondiale, 2008) • Hommes employés dans l'agriculture : 2 % (Banque mondiale, 2008) Conseil oléicole international Page 1 / 3 Politique - Malte 2012 2. LE SECTEUR OLÉICOLE À MALTE 2.1. Ressources oléicoles L'oléiculture est un secteur jeune en plein développement dans l'archipel de Malte où elle a gagné en importance ces dernières années étant donné qu'une prise de conscience croissante des bienfaits de l'huile d'olive au sein de la population a conduit à la plantation de nombreuses oliveraies et à la création de nouvelles huileries dans les îles de Malte et Gozo. -
Characterisation of Monovarietal Olive Oils Obtained from Croatian Cvs
foods Article Characterisation of Monovarietal Olive Oils Obtained from Croatian cvs. Drobnica and Buza during the Ripening Period Jasminka Giacometti 1,* , Cedomilaˇ Milin 2, Fabio Giacometti 3 and Zlatko Ciganj 4 1 Department of Biotechnology, University of Rijeka, Radmile Matejˇci´c2, HR-51000 Rijeka, Croatia 2 Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Bra´ceBranchetta 20, HR-51000 Rijeka, Croatia; [email protected] 3 Ekoplus, d.o.o., Pogled 2/4, HR-51216 Viškovo, Croatia; [email protected] 4 INA Refinery Urinj, HR-51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-51-584-557 Received: 19 October 2018; Accepted: 9 November 2018; Published: 13 November 2018 Abstract: The aim of this study was the monitoring of the chemical composition of olive oil at different ripening stages to determine the appropriate harvesting time during any given crop season in the northern Adriatic region. For this purpose, from September to November, two Croatian olive cultivars (Drobnica and Buza) were taken from two different olive orchards and for the respective olive oils, prepared on a laboratory scale, the major saponifiable, unsaponifiable and phenolic compounds were determined. Based on the chemical analyses performed, the optimal harvesting time has been set in October for both cultivars. Buza had a higher oleic acid, but lower total sterols, squalene and total alkanols. Compared to the local cultivars, the studied cultivars had a high total phenolic content and antioxidant activity. The antioxidant activity and concentrations of total phenols correlated with α-tocopherol in oil samples taken during the ripening progress. -
1 Supplimentary Material Supplier Origin Year Cultivar 1
Supplimentary Material Table S1. The cultivars used in this study and their country of origin. Supplier Origin Year Cultivar 1. Itesori Italy 2014 Nocellara 2. Frantoio di Santa Tea Italy (Firenze) 2015 Frantoio 3. Frantoio di santa Tea Italy 2015 Leccino 4. Glacomo grassi Italy 2015 Olivobianco 5. Pendolino Italy 2015 Pendolino 6. Caravella finefood Italy (Calabria) 2016 Carolea 7. Caravella finefood Italy (Puglia) 2016 Ogliarola Bio 8. Caravella finefood Italy (Puglia) 2016 Peranzana 9. Corona delle puglie Italy 2016 Coratina 10. Frantoi cutrera Italy 2016 Cerasuola 11. Frantoio di santa Tea Italy (Firenze) 2016 Moraiolo 12. Glacomo grassi Italy 2016 Leccio del Corno 13. La selvotta Italy (Abruzzo) 2016 I-77 14. Mamma regina Italy 2016 Tortiglione 15. Roi Italy 2016 Taggiasca 16. Ursini Italy 2016 Gentile di Chieti 17. Frantoi cutrera Sicily 2015 Tonda Iblea 18. Frantoi cutrera Sicily 2016 Nocellara Etnea 19. Frantoi cutrera Sicily 2016 Moresca 20. Frantoi cutrera Sicily 2016 Biancolilla 21. Frantoi cutrera Sicily 2016 Nocellara del Belice 22. Frantoi cutrera Sicily 2016 Tonda Iblea 23. Frantoi cutrera Sicily 2016 Cerasuola 24. Arbequina Spain 2016 Arbequina 25. Hojiblanca Spain 2016 Hojiblanca 26. Casas hualdo Spain 2016 Picual 27. Pago de baldios san carlos Spain 2016 Arbequina 28. Château d’estoublon France 2015 Béruguette 29. Château d’estoublon France 2015 Picholine 30. Château d’estoublon France 2015 Grossane 31. Manianis Greece 2016 Koroneiki 32. Moria ella Greece 2016 Koroneiki 33. Sam Cremona Malta 2013 Malti 34. Sam Cremona Malta 2014 Bidni 35. Sam Cremona Malta 2014 Bidni 36. Sam Cremona Malta 2014 Malti 37. Parent Siggiewi Press Malta 2014 Carolea 38. -
Phenolic Compounds and Sterol Contents of Olive (Olea Europaea L.) Oils Obtained from Different Varieties
Pak. J. Bot., 49(1): 169-172, 2017. PHENOLIC COMPOUNDS AND STEROL CONTENTS OF OLIVE (OLEA EUROPAEA L.) OILS OBTAINED FROM DIFFERENT VARIETIES FAHAD AL JUHAIMI1, MEHMET MUSA ÖZCAN2, KASHIF GHAFOOR1*, OLADIPUPO Q. ADIAMO1 AND ELFADIL E. BABIKER1 1Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh-Saudi Arabia 2Department of Food Engineering, Faculty of Agricultural, Selcuk University, 42031 Konya-Turkey *Corresponding author’s email: [email protected]; Ph: +966-11-4691951; Fax: +966-11-4678394 Abstract Oil obtained from 5 different olive cultivars was analyzed for phenolic and sterol composition. Total phenolic contents of oils were determined between 94.99 mg GAE/kg oil (Al-Joif) to 405.71 mg GAE/ kg oil (Sarıulak) (p<0.05). Phenolic compounds of oils obtained from different olive verities (Ayvalık, Sarıulak, Savrani, Al-Joif and Gemlik) when fully ripened were evaluated using reversed phase high performance liquid chromatography (RP-HPLC). Hydroxytyrosol and tyrosol were identified to have higher concentrations than other compounds. Tyrosol contents were between 3.65 mg/kg to 21.47 mg/kg oil (p<0.05) in different verities. The contents of hydroxytyrosol of oils for Ayvalik and Gemlik were 1.23 and 14.42 mg/kg, respectively. Cinnamic acid was detected only in Al-Joif olive oil sample. Low amounts of syringic, vanillin, p-cumaric, quercetin and luteolin were observed in different varieties’ oils. Key words: Olive oil, Total phenol, Phenolic compounds, Sterols, GC, HPLC. Introduction in order to observe compositional differences with references to these components. The olive tree (Oleo europaea L.) is widely cultivated in different parts of the world for producing Material and Methods olive fruits and obtaining oil which has economic and nutritional significance. -
Effect of Some Chemical Thinning Agents on Fruit Set of Manzanillo and Eggizi Shami Olive Cultivars
Journal of Horticultural Science & Ornamental Plants 7 (3): 117-123, 2015 ISSN 2079-2158 © IDOSI Publications, 2015 DOI: 10.5829/idosi.jhsop.2015.7.3.1163 Effect of Some Chemical Thinning Agents on Fruit Set of Manzanillo and Eggizi Shami Olive Cultivars El Said S. Hegazi, Ayman A. Hegazi and Dalia M. El Koly Department of Pomology, Faculty of Agriculture, Cairo University, Giza, Egypt Abstract: This investigation was conducted during two successive seasons (2009-2010) on two olive cultivars (Manzanillo and Eggizi Shami) in a private orchard in the Alex desert road. The aim of this study is to investigate the effect of some chemical thinning agents GA3 (100,150 and 200 ppm), NAA (100,150 and 200 ppm) and Urea (4,6,8 and 10%) which sprayed at full bloom, five days after full bloom, ten days after full bloom and fifteen days after full bloom on initial fruit set (21 days after full bloom), final fruit set (forty five days after full bloom) and at harvest date. The results showed that all chemical thinning agents reduced fruit set significantly compared with control (sprayed with water only). Urea spray was the most effective in reducing fruit set compared with GA3 and NAA. The highest concentration was more effective than the lower concentration in each chemical component. Fruiting at different time of estimation with Manzanillo cv. was significantly lower than Eggizi Shami cv. Gibberellic acid showed moderate effect in reducing fruit set (between Urea and NAA). The most effective date was in reducing fruiting was at full bloom while the lowest was at fifteen day after full bloom. -
Salted, Cured & Pressed
SALTED, CURED & PRESSED CONTENTS DELL’AMI 4 DELL’AMI OLIVES 6 DELL’AMI ANTIPASTI 16 SALTED, CURED DELL’AMI RICE 20 & PRESSED DELL’AMI PESTOS & PASTES 24 The rules of eating have changed. Where starter, main RELISHES, SAUCES & DRESSINGS 28 and dessert once ruled the menu, boundaries have now blurred. Dinner is just as likely to be a platter of plump DELL’AMI VINEGARS 30 olives, piquillo peppers and silky charcuterie, shared among friends, as it is a steak for one. Underpinning this new relaxed approach to dining are traditional artisan DELL’AMI OILS 36 methods of salting, curing and pressing. Think early harvest olives crushed to release peppery extra virgin oil, STORE CUPBOARD 41 legs of pork buried in salt and air dried for months on end or the heady scent of field-grown basil captured in CURED MEATS 43 vibrant green pesto. Good ingredients and good company mean good times. ITALIAN CURED MEATS 44 SPANISH CURED MEATS 52 BRITISH CURED MEATS 56 BRITISH SMOKED SALMON 70 DELL’AMI Delicious things come to those who wait. That’s what we’ve learned over 25 years of sourcing remarkable foods from artisan producers. The antithesis of fast food, our Dell’ami products take time, knowledge and skill to produce, whether it’s picking only the plumpest ‘super colossal’ Sicilian Nocellara del Belice olives or sherry vinegar, aged in oak barrels for 20 years. The close bonds we have forged enable us to constantly evolve our range, protecting livelihoods and age-old skills in the process. Time always tells in the end. -
Antioxidants-In-Extra-Virgin-Olive-Oil
antioxidants Review Antioxidants in Extra Virgin Olive Oil and Table Olives: Connections between Agriculture and Processing for Health Choices Barbara Lanza 1,* and Paolino Ninfali 2 1 Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Nazionale 38, I-65012 Cepagatti (PE), Italy 2 Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino (PU), Italy; [email protected] * Correspondence: [email protected] Received: 2 November 2019; Accepted: 28 December 2019; Published: 2 January 2020 Abstract: This review focuses on the conditions required to increase and maintain the antioxidant nutrients in both extra virgin olive oil (EVOO) and table olives (TOs) from the agronomic and technological practices to the gastronomy. The main antioxidants of TOs and EVOO are phenol alcohols and acids, secoiridoids, lignans and flavones, all of which possess the ability to prolong the oil’s shelf-life and exhibit healthy properties for humans. The precise detection of secoiridoid derivatives remains the breakthrough for the nutritional and health quality certification of extra virgin olive oils (EVOOs) required for EFSA health claims. To attain the necessary antioxidant quality in both EVOO and TOs, it is necessary to hard focus on the several steps in the production chain, including olive cultivar, agronomic conditions, harvesting methods, and transformation technology. The quality level is maintained if the storage conditions aim to minimize the oxidative processes that occur due to oxygen and light. In terms of minor polar biophenols, there is disagreement on which between the organic or conventional EVOOs show higher concentration values. -
Awards by Producer Los Angeles Extra Virgin Olive Oil Awards
Los Angeles Extra Virgin Olive Oil Awards Awards by Producer 1492 www.Quepu.cl BEST OF CLASS, GOLD MEDAL Robust, Picual, Region Del Maule BEST OF CLASS, GOLD MEDAL Robust, Frantoio, Region Del Maule GOLD MEDAL Delicate, Arbequina, Region Del Maule 1st Origin www.1st-Olive.com GOLD MEDAL Medium, Shodoshima 2015 8 Olivos www.DonRafael.cl BRONZE MEDAL Medium, Lontue Valley Acaia www.Hae-gr.com BRONZE MEDAL Medium, Kolovi, Lesvos Adon and Myrrh www.AdonandMyrrh.com BRONZE MEDAL Medium, Baladi, Lebanon Agropromex www.AgroPromex.com SILVER MEDAL Robust, La Roda de Andalucia 2015 Agura www.AoveAgura.com GOLD MEDAL Medium, Picual, Andalucia Silver - Color & Type - BRONZE MEDAL Medium, Coupage, Andalucia Albares www.JalonMoncayo.com BRONZE MEDAL Medium, One, Moncayo Bronze - Contemporary - Albea Blanca Extra Virgin Olive Oil Collection www.AlbeaBlanca.es SILVER MEDAL Robust, Hojiblanca, Cordoba Gold - Series - SILVER MEDAL Medium, Manzanilla Cacerena Caceres Gold - Series - SILVER MEDAL Medium, Koroneiki, Toledo Gold - Series - Alonso Olive Oil www.AlonsOliveOil.com BEST OF SHOW - DELICATE, BEST OF CLASS, GOLD MEDAL Delicate, Koroneiki, La Estrella BEST OF CLASS, GOLD MEDAL Medium, Ultra Premium, La Estrella GOLD MEDAL Robust, Picual, La Estrella SILVER MEDAL Delicate, Frantoio, La Estrella Bronze - Color & Type - SILVER MEDAL Medium, Coratina, La Estrella Los Angeles Extra Virgin Olive Oil Awards Awards by Producer ALTO Olives www.Alto-Olives.com.au GOLD MEDAL Medium, ROBUST, Abercrombie Wilderness, Southern Tablelands 2016 Altomena www.Altomena.it -
Evaluation of Fatty Acid and Sterol Profiles, California Olive Oil, 2016/17 Season
Evaluation of Fatty Acid and Sterol Profiles, California Olive Oil, 2016/17 Season Evaluation of Fatty Acid and Sterol Profiles California Olive Oil 2016/17 Season Submitted to the Olive Oil Commission of California June 2017 Evaluation of Fatty Acid and Sterol Profiles, California Olive Oil, 2016/17 Season Evaluation of Fatty Acid and Sterol Profiles, California Olive Oil, 2016/17 Season SUMMARY At the request of the Olive Oil Commission of California (OOCC), the UC Davis Olive Center collected California olive oil samples produced in the 2016/17 Season and analyzed fatty acid and sterol profiles. The study team collected 70 single-variety samples of olive oil from California commercial producers. Samples that were found to be outside one or more parameters at the UC Davis laboratory were sent to Modern Olives Laboratory (Woodland, CA) for retesting. Both laboratories agreed that 61 of 70 samples (87 percent) were within the fatty acid and sterol parameters required in California. Nine samples (13 percent) were outside at least one fatty acid or sterol parameter. The Commission may wish to recommend modifications to California olive oil standards so that fatty acid and sterol profile standards accommodate all olive oil produced in California and assess new and advanced methods to analyze olive oil purity with the potential to cost less, be more accurate, and minimize laboratory variability. BACKGROUND The Olive Oil Commission of California requested the UC Davis Olive Center to collect data on the fatty acid and sterol profile of California olive oils from commercial samples. The Commission requested that the Olive Center collect at least 70 samples from a wide range of varieties and counties. -
Pulsed Electric Fields for the Treatment of Olive Pastes in the Oil Extraction Process
applied sciences Article Pulsed Electric Fields for the Treatment of Olive Pastes in the Oil Extraction Process Antonia Tamborrino 1,* , Stefania Urbani 2, Maurizio Servili 2, Roberto Romaniello 3, Claudio Perone 4 and Alessandro Leone 3 1 Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy 2 Department of the Science of Agriculture, Food and Environment, University of Perugia via S. Costanzo, 06126 Perugia, Italy; [email protected] (S.U.); [email protected] (M.S.) 3 Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71100 Foggia, Italy; [email protected] (R.R.); [email protected] (A.L.) 4 Department of Agriculture, Environment and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-080-5443-122 Received: 6 November 2019; Accepted: 19 December 2019; Published: 22 December 2019 Abstract: The aim of this study was to evaluate the ability of pulsed electric field (PEF) technology to improve the extractability and enhance the oil quality in an industrial olive oil extraction process. Using a PEF device on olive pastes significantly increased the extractability from 79.5% for the control, up to 85.5%. The PEF system did not modify the primary legal quality parameters or total concentrations of phenols, aldehydes, and esters. On the contrary, the non-thermal treatment slightly enhanced the dialdehydic forms of decarboxymethyl elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) and tyrosol (p-HPEA-EDA), and decreased the total saturated and unsaturated C5 and C6 alcohols of the PEF EVOO (Extra Virgin Olive Oil) compared to the control test.