Butterfly-Inspired Photonics Reverse Diffraction Color Sequence

Total Page:16

File Type:pdf, Size:1020Kb

Butterfly-Inspired Photonics Reverse Diffraction Color Sequence COMMENTARY Butterfly-inspired photonics reverse diffraction color sequence Michael H. Bartl1 and plants (3, 14). Structural colors are the Department of Chemistry, and Materials Research Science and Engineering Center, University result of diffraction and specular reflection of Utah, Salt Lake City, UT 84112 of light, in contrast to typical pigments that produce color by light absorption and dif- Biological systems have been an infinite 12). In contrast, in bioinspiration and bio- fuse reflection. Fossil finds date the first reservoir of inspiration ever since humans mimicry, a biological function or activity— examples of structural colors to some 500 million years ago, and the earliest examples started to develop tools and machinery. Just rather than the organism itself—is converted of photonic structures in these fossil records as early scientists and engineers attempted to into an artificial, human-made material or were discovered within insect hairs and spines mimic birds and fish in the development of device. In PNAS, England et al. report an in the form of multilayers and gratings flying machines and submarines, today, new optical micrograting array inspired by a pho- (15). Although these early structures most technologies find their inspiration from bi- tonic structure found in iridescently colored likely were the result of random mutations, ology, such as gecko feet (1), antireflective eye butterfly wings (13). The authors demon- the accompanying coloration effects must lenses (2), iridescent insects (3), and water- strate a micrograting array that not only have presented evolutionary advantages in repellant surfaces (4). Incorporating biologi- mimics the unique diffraction properties of camouflaging, signaling, communicating, cal systems and concepts into technological the biological structure with reversed color- and mimicking (16). Today we find an design can happen in several ways: inspira- order sequence, but also can be designed to enormous variety of photonic structures tion, mimicking, and replication (5). In the tune these optical properties. in biology, including deformable graded- latter, entire organisms or body parts are di- The concept of structural colors is an index lenses, photonic crystals, and various rectly used, and their structural features are omnipresent optical phenomenon in biolog- diffraction gratings (2, 3, 17–19). – replicated into another compound (6 8). ical systems and refers to colors produced A particularly interesting diffraction ele- Examples include 3D photonic crystals from due to the interaction of light with nano- ment was discovered several years ago in the iridescent beetle scales (9, 10) or antireflec- to-microscale structures built into various wings of the butterfly Pierella luna when tive microlens arrays from insect eyes (11, body parts of insects, birds, marine animals, Vigneron et al. reported that light hitting certain parts of the wings of this butterfly is diffracted in reversed diffraction color-mode sequence compared with a conventional diffraction grating (20). In a conventional grating, white light striking the grating is decomposed such that shorter wavelengths are diffracted less than longer ones; i.e., blue wavelengths exit with an angle closer to spec- ularity followed by green, yellow, and red (Fig. 1A). This sequence is reversed when white light is decomposed by interaction with the diffractive elements (specific cuticle scales) located on the butterfly wings. Here, red wavelengths exit at angles closer to the direction perpendicular to the wing plane, whereas yellow, green, and blue exit at pro- gressively increasing angles (Fig. 1B). The reason for this reversed diffraction behavior lies in the curved shape of each diffracting scale, which positions the grating periodicity (nano-ribs) perpendicular to the wing surface (Fig. 1D). Such a “vertical” grating operates in transmission mode, in contrast to the Fig. 1. Schematic illustration of diffraction properties and grating types. (A) Color-mode sequence obtained from a conventional horizontal diffraction element. (B) Reversed color-mode sequence of diffracted light observed from diffraction elements located on the wings of the butterfly Pierella luna.(C) Schematic depiction of the structure of Author contributions: M.H.B. wrote the paper. a conventional horizontal diffraction grating operating in reflection mode. (D) Schematic depiction of a curved but- The author declares no conflict of interest. terfly wing scale with a vertically oriented diffraction element operating in transmission mode. (E) Schematic depiction of the bioinspired artificial vertical diffraction element fabricated by England et al. (13). DE, diffraction element; DL, See companion article on page 15630. diffracted light; WL, white light. 1Email: [email protected]. 15602–15603 | PNAS | November 4, 2014 | vol. 111 | no. 44 www.pnas.org/cgi/doi/10.1073/pnas.1418292111 Downloaded by guest on September 25, 2021 reflection mode of a conventional grating go beyond merely reproducing the optical fraction pattern in terms of wavelength and COMMENTARY with periodicity parallel to the surface (Fig. effects of the biological samples. They or- angular position. 1C). Using simple light-ray geometry argu- ganize vertical scalloped microplates into The work by England et al. is an excellent ments, the authors show this vertical trans- a highly periodic array (13). This array con- example of taking inspiration from some of mission grating produces the exact reversed stitutes its own conventional diffraction the amazing structures and functions opti- color-mode sequence in decomposed white mized by natural evolution and translating light observed from the butterfly wing scales. England et al. report an this inspiration into an artificial material England et al. took the butterfly’s special optical micrograting optimized for technological applications geometry and its unique function as a blue- (13). Although biology provides an awe- print for the fabrication of a new type of array inspired by a inspiring source of unique materials, con- optical grating (13). True to bioinspiration photonic structure cepts, and functionalities, as scientists and and mimicry, the authors did not produce engineers, we have to remind ourselves that exact replicas of the curved butterfly scales, found in iridescently the implementation of photonic structures but rather extracted the crucial structural and colored butterfly wings. varies strongly between biological and tech- functional aspects—the vertical geometry and nological applications. Although biological grating. In addition, coupling of the dif- the transmission mode of the grating—to structures have been optimized to create translate these aspects into an artificial pho- fraction modes of these two gratings (scallops coloration for camouflage, signaling, or tonic material (Fig. 1E). Butterfly scale- and microplate array) was observed. This disguise, the goal for technological applica- inspired diffraction elements were fabricated hierarchical coupling could be controlled by tions is to optimize photonic structures for using a master structure/molding procedure. adjusting both the interplate spacing and the dispersing, guiding, storing, and amplifying For this, a silicon master was created by the scallop pitch and thereby strongly enriched light. In addition, evolution has designed Bosch process, which involves multiple etch- the optical diffraction properties of the biological photonic structures as part of an ing and passivation steps. The silicon master material. Furthermore, the authors tilted entire organism, whereas artificial photonics consisted of an array of micrometer-sized the angle of orientation of the microplates underlie a very different design principle, vertical plates, each with periodic undula- from vertical to 20° off vertical to provide namely integration into devices. The work tions on the surface. The periodic length of another tuning knob for the optical prop- of England et al. elegantly embodies these the surface undulations, termed scallops, was erties of this photonic material. Although design principles by developing bio-inspired designed to be 500 nm, very close to the this tilting leaves the microplate array dif- artificial photonic structures that will pave nano-ribs in the vertical grating structure of fraction properties largely unchanged, it the way for novel applications in sensing, the butterfly scales. The array of scalloped predictively shifts the scallop-induced dif- anticounterfeiting, and light-emitting diodes. silicon plates was then subjected to a dou- ble-molding procedure involving polymeric compounds. First, a negative replica of the 1 Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in 12 Pulsifer DP, Lakhtakia A, Martín-Palma RJ, Pantano CG (2010) master structure was cast into polydimethyl biological attachment devices. Proc Natl Acad Sci USA 100(19): Mass fabrication technique for polymeric replicas of arrays of insect 10603–10606. corneas. Bioinspir Biomim 5(3):036001. siloxane (PDMS). The PDMS structure then 2 Zuccarello G, Scribner D, Sands R, Buckley LJ (2002) Materials for 13 England G, et al. (2014) Bioinspired micrograting arrays mimicking served as an intermediary template and was bio-inspired optics. Adv Mater 14(18):1261–1264. the reverse color diffraction elements evolved by the butterfly Pierella subsequently replicated into a UV-curable 3 Srinivasarao M (1999) Nano-optics in the biological world: Beetles, luna. Proc Natl Acad Sci
Recommended publications
  • INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
    ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala.
    [Show full text]
  • Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
    Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.
    [Show full text]
  • NYMPHALIDAE: SATYRINAE Jaime Pinzón-C
    WEB VERSION MARIPOSAS del Bajo Río Caquetá y Apaporis (Amazonia Colombiana) 1 NYMPHALIDAE: SATYRINAE Jaime Pinzón-C. - - Conservación Internacional Colombia Fotos de J. Pinzón-C. Producido por: T. S. Wachter, R. B. Foster, con el apoyo del Ellen Hyndman Fund y Andrew Mellon Foundation. © Jaime Pinzón-C. [[email protected]] Conservation International – Colombia, Cra 13 # 71-41 Bogotá, Colombia: [http://www.conservation.org.co] © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [www.fmnh.org/animalguides] Rapid Color Guide # 250 versión 1 02/2009 DORSAL VENTRAL Cithaerias pireta aurorina Cithaerias aff. pyritosa Haetera piera Bia actorion WEB VERSION 2 MARIPOSAS del Bajo Río Caquetá y Apaporis (Amazonia Colombiana) NYMPHALIDAE: SATYRINAE Jaime Pinzón-C. - - Conservación Internacional Colombia Fotos de J. Pinzón-C. Producido por: T. S. Wachter, R. B. Foster, con el apoyo del Ellen Hyndman Fund y Andrew Mellon Foundation. © Jaime Pinzón-C. [[email protected]] Conservation International – Colombia, Cra 13 # 71-41 Bogotá, Colombia: [http://www.conservation.org.co] © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [www.fmnh.org/animalguides] Rapid Color Guide # 250 versión 1 02/2009 DORSAL VENTRAL Pierella astyoche Pierella hortona Pierella lamia Pierella lena Caeruleuptychia caerulea Chloreuptychia agatha WEB VERSION MARIPOSAS del Bajo Río Caquetá y Apaporis (Amazonia Colombiana) 3 NYMPHALIDAE: SATYRINAE Jaime Pinzón-C. - - Conservación Internacional Colombia Fotos de J. Pinzón-C. Producido por: T. S. Wachter, R. B. Foster, con el apoyo del Ellen Hyndman Fund y Andrew Mellon Foundation. © Jaime Pinzón-C. [[email protected]] Conservation International – Colombia, Cra 13 # 71-41 Bogotá, Colombia: [http://www.conservation.org.co] © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA.
    [Show full text]
  • Diversidad Y Composición De Mariposas (Lepidoptera: Morphinae Y Satyrinae) De Los Varillales En La Reserva Nacional Allpahuayo Mishana, Loreto, Perú*
    BOLETÍN CIENTÍFICO bol.cient.mus.hist.nat. 25 (1), enero-junio, 2021. 177-190. ISSN: 0123-3068 (Impreso) ISSN: 2462-8190 (En línea) CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL Diversidad y composición de mariposas (Lepidoptera: Morphinae y Satyrinae) de los varillales en la Reserva Nacional Allpahuayo Mishana, Loreto, Perú* Joel Vásquez-Bardales1, Johnny Callirgos-Bardales2, Ricardo Zárate-Gómez3, Juan José Ramírez-Hernandez4, Julio Pinedo-Jiménez5, Alberto García-Ruiz6, Heiter Valderrama-Freyre7, Tedi Pacheco-Gómez8, Rodil Tello-Espinoza9 Resumen Introducción. Las mariposas son indicadores ecológicos muy sensibles a los cambios ambientales; el inventario de sus comunidades es una herramienta válida para conocer el estado de conservación o alteración de su hábitat. Objetivos. Evaluar la diversidad y composición de las mariposas (Lepidoptera: Morphinae y Satyrinae) en los Varíllales de la Reserva Nacional Allpahuayo Mishana (RNAM), Perú. Metodología. Los muestreos fueron realizados de enero a diciembre del 2015. En un Varillal alto y bajo a lo largo de 7 transectos de 25 m, las mariposas fueron atraídas con cebos de frutas fermentadas y capturadas con una red entomológica, durante 1 semana de cada mes; con recolectas diarias en el trascurso de la mañana y la tarde. Resultados. Se registraron un total de 2662 individuos, incluidos en 38 especies y 16 géneros, siendo las especies más abundantes Pierella lena, Pierella lamia y Cithaerias pireta aurorina dentro de los Satyrinae; y en los Morphinae figuran Morpho helenor y Caligo eurilochus. Entre las especies comerciales, resaltan Morpho menelaus, M. helenor, Caligo idomeneus, C. eurilochus, C. pireta aurorina y Haetera piera negra. Alcance. La mayor riqueza de especies se encontró en el Varillal alto y albergan varias especies de alto valor para fines de educación ambiental y bionegocios.
    [Show full text]
  • Rainbow Peacock Spiders Inspire Miniature Super-Iridescent Optics
    ARTICLE DOI: 10.1038/s41467-017-02451-x OPEN Rainbow peacock spiders inspire miniature super- iridescent optics Bor-Kai Hsiung 1,8, Radwanul Hasan Siddique 2, Doekele G. Stavenga 3, Jürgen C. Otto4, Michael C. Allen5, Ying Liu6, Yong-Feng Lu 6, Dimitri D. Deheyn 5, Matthew D. Shawkey 1,7 & Todd A. Blackledge1 Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally- 1234567890 coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (~ 40 × 10 μm2) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders’ scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders’ scales could inspire novel, miniature light-dispersive components. 1 Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA. 2 Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. 3 Department of Computational Physics, University of Groningen, 9747 AG Groningen, The Netherlands. 4 19 Grevillea Avenue, St. Ives, NSW 2075, Australia. 5 Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92093, USA. 6 Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
    [Show full text]
  • Mariposas Satyrinae.Pdf
    ESCUELA POLITÉCNICA NACIONAL Fotos y texto: Vladimir Carvajal L. Pierella hyceta es una mariposa cuyas alas delanteras son de color café y las alas traseras son café con una mancha distal muy grande de color naranja , con cuatro manchas ocelares negras dispuestas radialmente. Ambas alas son atravesadas por tres líneas longitudinales más oscuras. Las especies del género Pierella, tienen la particularidad de tener alas traseras con superficie frontal mayor que las alas delanteras. El género se distribuyen en el bosque tropical y en el pie de monte entre 100-1600 m. La tribu Haeterini Esta tribu se halla exclusivamente restringida a la región neotropical. Los integrantes de este grupo se caracterizan por ser mariposas escurridizas, de vuelo furtivo sobre la superficie del suelo, y su desenvolvimiento permanente semi a escondidas en la penumbra del sotobosque. La tribu está constituida por 5 géneros: Pierella, Pseudohaetera, Haetera, Dulcedo y Cithaerias. Las mariposas pueden ser reconocidas instantáneamente por la característica forma de sus alas y su patrón críptico de su cara inferior. Suele volar a ras de Descansa con las alas suelo en zonas con abiertas poca luz y de aprovechando los vegetación muy rayos de sol que se tupida, en la selva filtran del dosel Pierella astyoche amazónica. Pierella lamia chalibaea arbóreo. Esta mariposa suele Esta mariposa suele de dos o tres de dos o tres individuos a lo largo individuos a lo largo de senderos oscuros y de senderos oscuros y estrechos del bosque estrechos del bosque o entre matorrales de o entre matorrales de Pierella lena bambú. Pierella lucia bambú.
    [Show full text]
  • Ecology, Population Biology and Mortality of Euptoieta Hegesia Cramer (Nymphalidae) on Jamaica
    }<mrnal <1 the Lepidopterists' Society 52(1), 1998, 9-39 ECOLOGY, POPULATION BIOLOGY AND MORTALITY OF EUPTOIETA HEGESIA CRAMER (NYMPHALIDAE) ON JAMAICA PHILLIP J. SCHAPPERT] AND JOEL S. SHORE Department of Biology, York University, 4700 Keele Street, North York, Ontario M3J IP3, Canada ABSTRACT. We examine the ecology, population biology and potential sources of mortality of Euptoieta hegesia, a tropical lowland butterfly from Jamaica, using a combina­ tion of captive rearing, studies of natural populations, and experimental approaches. We provide detailed observations of the life cycle and methods for captive rearing of this spe­ cies. We assess the relative performance of larvae on primary and secondary hostplants, distribution of larvae on the primary hostplant, hostplant population utilization, and the distribution of E. hegesia on the island. A mark-release-recapture study was conducted to estimate population parameters and we recorded sex, size, age (as estimated by wing wear), and wing damage sustained by the butterflies prior to their initial capture. We pro­ vide evidence that Tumera ulmifdia is the plimary hostplant of K hegesia on Jamaica and that butterfly population size is not limited by the availability of hostplants. These short­ lived butterflies appear to be residents of discrete hostplant populations and experience high mortality levels. Females are damaged more frequently, show more total damage and more frequent symmetrical hindwing damage (attributablc to ground-based predators) than do males. Wc compare the results of the population study with available studies of other tropical butterflies and suggest that lowland butterfly population structure and dy­ namics are Significantly different from that of rainforest species.
    [Show full text]
  • Biological Growth and Synthetic Fabrication of Structurally Colored Materials
    Biological growth and synthetic fabrication of structurally colored materials The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation McDougal, Anthony et al. "Biological growth and synthetic fabrication of structurally colored materials." Journal of Optics 21, 7 (June 2019): 073001 © 2019 IOP Publishing Ltd As Published http://dx.doi.org/10.1088/2040-8986/aaff39 Publisher IOP Publishing Version Final published version Citable link https://hdl.handle.net/1721.1/126616 Terms of Use Creative Commons Attribution 3.0 unported license Detailed Terms https://creativecommons.org/licenses/by/3.0/ Journal of Optics TOPICAL REVIEW • OPEN ACCESS Recent citations Biological growth and synthetic fabrication of - Stability and Selective Vapor Sensing of Structurally Colored Lepidopteran Wings structurally colored materials Under Humid Conditions Gábor Piszter et al To cite this article: Anthony McDougal et al 2019 J. Opt. 21 073001 - Iridescence and thermal properties of Urosaurus ornatus lizard skin described by a model of coupled photonic structures José G Murillo et al - Biological Material Interfaces as Inspiration View the article online for updates and enhancements. for Mechanical and Optical Material Designs Jing Ren et al This content was downloaded from IP address 137.83.219.59 on 29/07/2020 at 14:27 Journal of Optics J. Opt. 21 (2019) 073001 (51pp) https://doi.org/10.1088/2040-8986/aaff39 Topical Review Biological growth and synthetic fabrication of structurally colored materials Anthony McDougal , Benjamin Miller, Meera Singh and Mathias Kolle Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America E-mail: [email protected] Received 9 January 2018, revised 29 May 2018 Accepted for publication 16 January 2019 Published 11 June 2019 Abstract Nature’s light manipulation strategies—in particular those at the origin of bright iridescent colors —have fascinated humans for centuries.
    [Show full text]
  • Comparison of Rainforest Butterfly Assemblages Across Three Biogeographical Regions Using Standardized Protocols
    The Journal Volume 44: 17-28 of Research on the Lepidoptera ISSN 0022-4324 (PR in T ) THE LEPIDOPTERA RESEARCH FOUNDATION, 4 MA Y 2011 ISSN 2156-5457 (O N L in E ) Comparison of rainforest butterfly assemblages across three biogeographical regions using standardized protocols YVE S Bass ET 1,*, RO D Eas TWOO D 2, LEG I Sam 3, DA V id J. LO hman 2,4, VO J TE ch NOVOT N Y 5, Tim TRE U ER 2, SC OTT E. MI LLER 6, GEORGE D. WE ib LE N 7, NA O mi E. PI ER C E 2, SA R A Y udh Bun Y A VE jch EW in 8, WA T ana SA K ch OOWO N G 8, PI TOO N KO N G N OO 9 and MI G U EL A. OS OR I O -ARE nas 1 1Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama City, Republic of Panama 2Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 3The New Guinea Binatang Research Center, PO Box 604, Madang, Papua New Guinea 4Department of Biology, The City College of New York, The City University of New York, Convent Avenue at 138th Street, New York, NY 10031, USA 5Biology Center of the Czech Academy of Sciences and School of Biological Sciences, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic 6National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA 7Bell Museum of Natural History, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue Saint Paul, Minnesota 55108, USA 8Thai National Parks Wildlife and Plant Conservation Department, 61 Phaholyothin Road, Chatuchak, Bangkok 10900, Thailand 9Center for Tropical Forest Science, Khao Chong Botanical Garden, Tambon Chong, Nayong District, Trang 92170, Thailand [email protected] Abstract.
    [Show full text]
  • Life Histories of Neotropical Butterflies from Trinidad 1
    Vol. 1 No. 1 1990 Trinidad butterflies — 1: URICH and EMMEL 25 TROPICAL LEPIDOPTERA, 1(1): 25-26 LIFE HISTORIES OF NEOTROPICAL BUTTERFLIES FROM TRINIDAD 1. PIERELLA HYALINUS FUSIMACULATA (LEPIDOPTERA: SATYRIDAE) F. CLIVE URICH and THOMAS C. EMMEL Sans Souci Estate, Sangre Grande, Trinidad, and Department of Zoology, University of Florida, Gainesville, FL 32611, USA ABSTRACT.— The life history of Pierella hyalinus fusimaculata (Brown) (Lepidoptera: Satyridae) is described from material reared in captivity on grasses in eastern Trinidad. The complete life cycle takes 84 days (8 days in the egg stage, 60 days in four larval instars, and 16 days as a pupa). KEY WORDS: Caligo, Gramineae, grasses, Hcliconiaceae, immature stages, life history, Marantaceae, Nymphalidac. The island of Trinidad, southernmost of the West Indies, lies between latitudes 10° and 11° N, and is separated from Venezue- la on the mainland of South America by only about 10 miles (16 km) at its two projecting northwestern and southwestern peninsu- las. With a total land area of 1,754 square miles (2806 sq km), the island is roughly rectangular in shape, being 55 miles (88km) at its greatest length from north to south, and having an average width of 40 miles (64km), The mountains of the Northern Range rise to over 3,000ft (1417m); two lower ranges transverse the island to the south, separated by swamps and plains. Rainfall may exceed 150 inches (3810mm) in the eastern part of the Northern Range, dropping to 60 inches (1524mm) along that coast (ffrcnch, 1976). The wet season occurs from late May to December (with a short break occurring in September or Octo- ber), while the dry season lasts from January to April.
    [Show full text]
  • Bioinspired Micrograting Arrays Mimicking the Reverse Color Diffraction Elements Evolved by the Butterfly Pierella Luna
    Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna Grant Englanda, Mathias Kollea,b,1, Philseok Kimc, Mughees Khanc, Philip Muñoza, Eric Mazura, and Joanna Aizenberga,c,1 aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; bDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139; and cWyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 Edited by Galen D. Stucky, University of California, Santa Barbara, CA, and approved September 12, 2014 (received for review June 30, 2014) Recently, diffraction elements that reverse the color sequence effect results from the local morphology of individual scales normally observed in planar diffraction gratings have been found within the colored spot on the fore wings (12). The top parts of in the wing scales of the butterfly Pierella luna. Here, we describe the scales are curled upward, orienting lines of periodically the creation of an artificial photonic material mimicking this re- arranged cross-ribs perpendicular to the wing surface. (Fig. 1 C verse color-order diffraction effect. The bioinspired system con- and D). Light incident at an angle onto the curled parts of the sists of ordered arrays of vertically oriented microdiffraction scales is diffracted by the cross-rib structure acting as a diffrac- gratings. We present a detailed analysis and modeling of the cou- tion grating, with a periodicity of ∼400 nm. The alignment of the pling of diffraction resulting from individual structural compo- grating perpendicular to the surface results in the reverse color nents and demonstrate its strong dependence on the orientation sequence that can be observed in angularly resolved reflection of the individual miniature gratings.
    [Show full text]
  • Journal of Avian Biology JAV-02474 Mills, L
    Journal of Avian Biology JAV-02474 Mills, L. J., Wilson, J. D., Lange, A., Moore, K., Henwood, B., Knipe, H., Chaput, D. L. and Tyler, C. R. 2020. Using molecular and crowd-sourcing methods to assess breeding ground diet of a migratory brood parasite of conservation concern. – J. Avian Biol. 2020: e02474 Supplementary material Supplementary materials DNA extraction Ethanol was removed from the samples by freeze-drying to prevent loss of DNA from the vials, and dried samples were stored at -80 °C until DNA extraction. DNA was extracted using a precipitation and re-suspension method adapted from Bramwell et al. (1995), with modifications recommended by Lever et al. (2015). Lysis buffer (30 mM Tris, 30 mM EDTA, pH 8) was added at room temperature and mixed by vortex. Samples were Quickly re-frozen in liQuid nitrogen to lyse cells and then briefly thawed in a 37 °C water bath. A mixture of two different beads (0.2 g ceramic beads 1.4 mm and 0.3 g garnet beads 0.7 mm) was added and samples were shaken at 30 Hz for 3 x 40 s using a TissueLyser II (Qiagen, Hilden Germany). To 19-parts sample solution, 1 part SDS solution (10% w/v) and 0.1 parts proteinase K (20 mg/ml) were added, and samples incubated for 4 h in a shaking incubator at 55 °C to continue lysis and protein digestion. Sample temperature was raised to 65 °C and to each 5 part sample solution, 1 part of 5 M NaCl solution was added and mixed by inversion, then 0.8 parts warm CTAB solution (hexadecyltrimethylammonium bromide, 10% w/v) added and mixed.
    [Show full text]