Middle Miocene Rodents from Quebrada Honda, Bolivia

Total Page:16

File Type:pdf, Size:1020Kb

Middle Miocene Rodents from Quebrada Honda, Bolivia MIDDLE MIOCENE RODENTS FROM QUEBRADA HONDA, BOLIVIA JENNIFER M. H. CHICK Submitted in partial fulfillment of the requirements for the degree of Master of Science Thesis Adviser: Dr. Darin Croft Department of Biology CASE WESTERN RESERVE UNIVERSITY May, 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables ...................................................................................................................... ii List of Figures.................................................................................................................... iii Abstract.............................................................................................................................. iv Introduction..........................................................................................................................1 Materials and Methods.........................................................................................................7 Systematic Paleontology....................................................................................................10 cf. Neoreomys huilensis Fields, 1957 ................................................................................12 Orthomyctera rigens Ameghino, 1889 ..............................................................................20 cf. Prodolichotis mendocina, Rovereto 1914 ....................................................................24 Prodolichotis sp. nov. ........................................................................................................25 Chasichimys sp. nov...........................................................................................................30 Gen. et sp. nov. ..................................................................................................................34 Prolagostomus profluens Ameghino, 1887 .......................................................................39 Prolagostomus amplus Ameghino, 1889...........................................................................43 cf. Prolagostomus divisus Ameghino, 1887 ......................................................................44 Prolagostomus sp. nov.......................................................................................................45 Discussion..........................................................................................................................47 Paleoecological Implications .............................................................................................47 Evolutionary Trends...........................................................................................................50 Appendices.........................................................................................................................54 References..........................................................................................................................59 i List of Tables Table 1. Summary of tooth measurements from Quebrada Honda Orthomyctera rigens specimens...........................................................................................................................21 2. Summary of tooth measurements from Chasichimys sp. nov. specimens ....................31 3. Summary of tooth measurements from Prolagostomus profluens specimens...............40 4. Summary of tooth measurements from Prolagostomus amplus specimens ..................43 ii List of Figures Figure 1. Miocene South American Land Mammal “Ages” (SALMAs)........................................4 2. Map of South America with Miocene localities .............................................................5 3. Occlusal structure terminology .......................................................................................9 4. Right mandible of cf. Neoreomys huilensis ...................................................................13 5. Right isolated molars from dasyproctid species ...........................................................15 6. Caviid genera from Quebrada Honda ............................................................................17 7. Right lower dentition of caviid and eocardiid species ..................................................19 8. Right upper dentition for Orthomyctera rigens and O. andina .....................................22 9. Comparison of right lower dentition for cf. Prodolichotis mendocina from Quebrada Honda (UF 236854) and P. mendocina (MLP 28-X-11-477)...........................24 10. Prodolichotis sp. nov. ..................................................................................................26 11. Comparison of lower right dentition of Prodolichotis sp. nov. and P. pridiana .........27 12. Right mandible of Chasichimys sp. nov. ....................................................................29 13. Right lower dentition of Chasichimys sp. nov. and other Chasichimys species..........33 14. Right mandible of a new adelphomyine from Quebrada Honda .................................34 15. Right lower dentition of adelphomyines .....................................................................36 16. Prolagostomus specimens from Quebrada Honda ......................................................38 17. Right upper dentition of lagostomines ........................................................................42 18. Left lower dentition of lagostomines ...........................................................................46 iii Middle Miocene Rodents from Quebrada Honda, Bolivia Abstract by JENNIFER M. H. CHICK Despite South America’s rich fossil mammal record, relatively little work has focused on middle-latitude faunas of Miocene age; most current understanding of South American mammals during the middle Miocene derives from the extremes of the continent. Quebrada Honda (Laventan SALMA) in southern Bolivia is intermediate in latitude between these two regions, partly filling this large geographic gap. New collections from Quebrada Honda in 2007 facilitated this analysis of its rodents. The most abundant of these rodents are Prolagostomus and caviids. The octodontid Chasichimys from Quebrada Honda represent the earliest and northernmost occurrences of the genus. A new genus and species of adelphomyine echimyid is also present, represented by a single specimen with trilophodont, plate-like teeth. The abundance and diversity of rodents with high-crowned teeth suggests that Quebrada Honda was an open, grassland environment with fewer forests. iv Introduction: Paleontologists have been intrigued by South America’s fossil record for the past several hundred years; this is largely due to the continent’s unique geologic history. For much of the past 65 million year, including most of the Cenozoic era, South America was an island continent, drifting in “splendid isolation” from other land masses (Simpson, 1980; MacFadden and Wolff, 1981). Consequently, fossils from this large time interval, and from the Tertiary period specifically, have yielded valuable information on South American endemism (Huchon and Douzery, 2001). Mammalian evolution on the continent is typically split into three phases or strata, each with distinct faunal compositions. The first phase of mammalian evolution in South America occurred between ~65 and 40 mya, during the Paleocene and much of the Eocene (Flynn and Wyss, 1998). During this first phase of evolution, tropical and temperate forests dominated the continent; marsupials, xenarthrans, notoungulates, and litopterns proliferated (Huchon and Douzery, 2001). During the second phase, which commenced near the Eocene-Oligocene boundary (40-21mya), platyrrhine primates and caviomorph rodents invaded the continent. This phase was also accompanied by a global cooling event and the replacement of tropical and temperate forests by grasslands (MacFadden, 2006). The third phase of South American mammalian evolution is marked by the Great Faunal Interchange. This event occurred during the Miocene-Pliocene, when the Panamanian land bridge enabled the immigration of North American taxa into South America. This intermingling of immigrant and native faunas resulted in the modern faunal assemblage we see today. 1 In addition to the continent’s interesting geologic past and high degree of endemism, South America is well-known for the quality of its fossil record (Patterson and Pascual, 1968). Although the majority of fossils are from Argentina, recent efforts have been made to increase the geological sampling of the continent (Croft, 2007). Information gathered from fossils in Argentina and Colombia, and more recently from Ecuador, Brazil, Peru, and Uruguay enabled researchers to construct a sequence of provincial “ages” (Simpson, 1940) unique to South America. These South American Land Mammal “Ages” (SALMAs) reflect changing faunal assemblages throughout the Cenozoic and allow paleontologists
Recommended publications
  • Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
    Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.).
    [Show full text]
  • Pleistocene Mammals and Paleoecology of the Western Amazon
    PLEISTOCENE MAMMALS AND PALEOECOLOGY OF THE WESTERN AMAZON By ALCEU RANCY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991 . To Cleusa, Bianca, Tiago, Thomas, and Nono Saul (Pistolin de Oro) . ACKNOWLEDGMENTS This work received strong support from John Eisenberg (chairman) and David Webb, both naturalists, humanists, and educators. Both were of special value, contributing more than the normal duties as members of my committee. Bruce MacFadden provided valuable insights at several periods of uncertainty. Ronald Labisky and Kent Redford also provided support and encouragement. My field work in the western Amazon was supported by several grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , and the Universidade Federal do Acre (UFAC) , Brazil. I also benefitted from grants awarded to Ken Campbell and Carl Frailey from the National Science Foundation (NSF) I thank Daryl Paul Domning, Jean Bocquentin Villanueva, Jonas Pereira de Souza Filho, Ken Campbell, Jose Carlos Rodrigues dos Santos, David Webb, Jorge Ferigolo, Carl Frailey, Ernesto Lavina, Michael Stokes, Marcondes Costa, and Ricardo Negri for sharing with me fruitful and adventurous field trips along the Amazonian rivers. The CNPq and the Universidade Federal do Acre, supported my visit to the. following institutions (and colleagues) to examine their vertebrate collections: iii . ; ; Universidade do Amazonas, Manaus
    [Show full text]
  • Archive Table 1 – Data for Pre-GABI South American Paleofaunas Analyzed in the Present Study
    Archive Table 1 – Data for pre-GABI South American paleofaunas analyzed in the present study. SALMA refers to South American Land Mammal “Age,” an informal system of biochronologic units that allows for intracontinental correlation (see Fig. 1). Fauna SALMA (Age) Pred. Prey Ratio Source(s) Notes Chasicoan both upper and lower Arroyo Chasicó 3 38 0.08 Croft in press (late Miocene) biozones Kay et al., 1997; Meldrum Monkey Beds, La Laventan 2 49 0.04 and Kay, 1997; Croft, in only Monkey Beds level Venta, Colombia (middle Miocene) press Kay et al., 1997; Meldrum Entire fauna, La Laventan entire fauna (i.e., all 6 64 0.09 and Kay, 1997; Croft, in Venta, Colombia (middle Miocene) levels) press Quebrada Honda, Laventan (middle 2 28 0.07 Croft in press Bolivia Miocene) Collón-Curá, Colloncuran 1 37 0.03 Croft in press Argentina (middle Miocene) P. australe Zone, Santacrucian upper biozone of 2 34 0.06 Tauber 1997 Santa Cruz, Argentina (early Miocene) Santa Cruz Fm. P. attenuatum Zone, Santacrucian lower biozone of 1 30 0.03 Tauber 1997 Santa Cruz, Argentina (early Miocene) Santa Cruz Fm. Santacrucian Croft et al., 2004, unpubl. Chucal, Chile 0 17 0.00 (early Miocene) data Scarritt Pocket, Deseadan Chaffee, 1952; Marshall 2 17 0.12 Argentina (late Oligocene) et al., 1986 Shockey 1997a with additions based on Sánchez-Villagra and Kay, 1997; Shockey, Deseadan (late Salla, Bolivia 6 37 0.16 1997b, 2005; Shockey all levels Oligocene) and Anaya, 2004, in press; Reguero and Cerdeño, 2005; Shockey et al., 2005 Flynn et al., 2003b; Croft Tinguirirican Tinguiririca, Chile 0 25 0.00 et al., 2003; Reguero et (early Oligocene) al., 2003 La Gran Hondonada, Mustersan 2 37 0.05 Cladera et al., 2004 Argentina (late Eocene) Gran Barranca, Barrancan subage of Casamayoran 4 42 0.10 Cifelli 1985 Argentina (late Eocene) SALMA Archive Table 2 – Data for Australian paleofaunas analyzed in the present study.
    [Show full text]
  • Análisis Litoestratigráfico De La Formación Cerro Azul (Mioceno Superior) En La Provincia De La Pampa
    Revista de la Asociación Geológica Argentina 67 (2): 257 - 265 (2010) 257 ANÁLISIS LITOESTRATIGRÁFICO DE LA FORMACIÓN CERRO AZUL (MIOCENO SUPERIOR) EN LA PROVINCIA DE LA PAMPA Graciela VISCONTI1, Ricardo N. MELCHOR1,2, Claudia I. MONTALVO1, Aldo M. UMAZANO1,2 y Elena E. DE ELORRIAGA1 1 Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales. E-mail: [email protected] 2 INCITAP (CONICET-UNLPam) RESUMEN La Formación Cerro Azul fue definida en 1980 para incluir a las sedimentitas continentales pliocenas (limolitas arenosas y are- niscas limosas) que afloran de manera discontinua en casi todo el ámbito de la provincia de La Pampa. No obstante, varias in- vestigaciones paleontológicas realizadas a partir de la segunda mitad de la década del 80’ han permitido ubicar geocronológi- camente a la unidad en el intervalo 10 Ma a 5,8-5,7 Ma. El objetivo del trabajo es realizar un análisis de las características li- toestratigráficas de la Formación Cerro Azul de acuerdo al Código Argentino de Estratigrafía. Se propone un lectoestratoti- po para la unidad, consistente en el perfil de Algarrobo del Águila y un perfil auxiliar en cerro El Morro. También se estable- cieron las relaciones estratigráficas con otras formaciones. Se interpreta un paleoambiente depositacional de llanura, donde alter- nan depósitos de loess con numerosos paleosuelos, detectándose escasos depósitos lacustres en la base y pocos cursos fluviales. Palabras clave: Formación Cerro Azul, Mioceno, Huayqueriense, La Pampa. ABSTRACT: Lithostratigrafic analysis of Cerro Azul Formation (Upper Miocene), La Pampa. Cerro Azul Formation was defined in 1980 to include the Pliocene continental sedimentary rocks (sandy silt and silty sand) that appear in discontinuous outcrops in al- most all La Pampa province.
    [Show full text]
  • First Lizard Remains (Teiidae) from the Miocene of Brazil (Solimões Formation)
    Rev. bras. paleontol. 12(3):225-230, Setembro/Dezembro 2009 © 2009 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2009.3.05 FIRST LIZARD REMAINS (TEIIDAE) FROM THE MIOCENE OF BRAZIL (SOLIMÕES FORMATION) ANNIE SCHMALTZ HSIOU Seção de Paleontologia, Museu de Ciências Naturais, FZB-RS, Av. Salvador França, 1427, 90690-000, Porto Alegre, RS, Brasil. [email protected] ADRIANA MARIA ALBINO CONICET, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, 7600 Mar del Plata, Argentina. [email protected] JORGE FERIGOLO Seção de Paleontologia, Museu de Ciências Naturais, FZB-RS, Av. Salvador França, 1427, 90690-000, Porto Alegre, RS, Brasil. [email protected] ABSTRACT – The South American Teiidae fossil record is restricted to the Cenozoic, and the most conspicuous remains were found in Early to Late Miocene of Argentina and Middle Miocene of Colombia and Peru, all represented by Tupinambinae lizards. Here, we describe a right fragmentary dentary and one dorsal vertebra collected in the Solimões Formation at the Talismã locality, situated on the Purus River, in the southwestern Brazilian Amazonia (Late Miocene). The material is tentatively conferred to the extinct genus Paradracaena. It represents the first record of lizards for the Neogene southwestern Brazilian Amazonia. Key words: Teiidae, Tupinambinae, Solimões Formation, Miocene, southwestern Brazilian Amazonia. RESUMO – O registro fóssil de Teiidae para a América do Sul é restrito ao Cenozóico. Os fósseis mais significantes são encontrados a partir do Mioceno inferior ao superior da Argentina e Mioceno médio da Colômbia e Peru, principalmente representados pelos Tupinambinae. Neste trabalho descreve-se um fragmento de dentário direito e uma vértebra dorsal coletados em sedimentos da Formação Solimões, na localidade Talismã, alto rio Purus, sudoeste da Amazônia brasileira.
    [Show full text]
  • Non Conventional Livestock for Better Livelihood: Prospects of Domestic Cavy in Mixed Production Systems of Tanzania
    Non Conventional Livestock for Better Livelihood: Prospects of Domestic Cavy in Mixed Production Systems of Tanzania D. M. Komwihangilo1, F. Meutchieye2, N. S. Urassa1, E. Chang’a3, C. S. Kasilima4 , L. F. Msaka1 and E. J. M. Shirima5 1Tanzania Livestock Research Institute (TALIRI), Mpwapwa 2University of Dschang, Faculty of Agronomy and Agricultural Sciences, Department of Animal Production, Cameroon 3TALIRI Mabuki, Mwanza and University of New England, Australia 4Mpwapwa District Council, Mpwapwa 5Ministry of Livestock and Fisheries Development, Dar es Salaam Corresponding author: [email protected] Abstract: Similar to majority of Sub-Saharan African countries, Tanzania depends largely on small and large ruminants, poultry and seafood to meet its animal protein needs. While most of the non- conventional protein sources are hunted, domestication of some of the species is equally promoted because hunting harvests cannot provide sustainable and affordable meats. Meanwhile, there have been growing demands for white meats, especially among the middle and high income population classes, exacerbated by changes in eating and living habits. Recent reports have identified domestic cavy (Cavia porcellus L.) as a right delicacy. This small pseudo ruminant that is also referred to as guinea pig or as Pimbi or Simbilisi in Kiswahili, is adopted in rural and urban households in Tanzania. This paper highlights on prospects of production of cavies focusing on the mixed production systems of Central Tanzania, where identified farmers keep a few cavy families either in own pens in a compound or within living houses of owners. Results indicated that farmers have such major reasons as keeping cavies for food (37%) or cash income (33%).
    [Show full text]
  • The Record of Miocene Impacts in the Argentine Pampas
    Meteoritics & Planetary Science 41, Nr 5, 749–771 (2006) Abstract available online at http://meteoritics.org The record of Miocene impacts in the Argentine Pampas Peter H. SCHULTZ1*, Marcelo Z¡RATE2, Willis E. HAMES3, R. Scott HARRIS1, T. E. BUNCH4, Christian KOEBERL5, Paul RENNE6, and James WITTKE7 1Department of Geological Sciences, Brown University, Providence, Rhode Island 02912–1846, USA 2Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Avda Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina 3Department of Geology, Auburn University, Auburn, Alabama 36849, USA 4Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA 5Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 6Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA 7Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011, USA *Corresponding author. E-mail: [email protected] (Received 02 March 2005; revision accepted 14 December 2005) Abstract–Argentine Pampean sediments represent a nearly continuous record of deposition since the late Miocene (∼10 Ma). Previous studies described five localized concentrations of vesicular impact glasses from the Holocene to late Pliocene. Two more occurrences from the late Miocene are reported here: one near Chasicó (CH) with an 40Ar/39Ar age of 9.24 ± 0.09 Ma, and the other near Bahía Blanca (BB) with an age of 5.28 ± 0.04 Ma. In contrast with andesitic and dacitic impact glasses from other localities in the Pampas, the CH and BB glasses are more mafic. They also exhibit higher degrees of melting with relatively few xenoycrysts but extensive quench crystals. In addition to evidence for extreme heating (>1700 °C), shock features are observed (e.g., planar deformation features [PDFs] and diaplectic quartz and feldspar) in impact glasses from both deposits.
    [Show full text]
  • New Mammals from the Deseadan (Late Oligocene) of Salla, Bolivia
    NEW MAMMALS FROM THE DESEADAN (LATE OLIGOCENE) OF SALLA, BOLIVIA SHOCKEY, Bruce, Florida Museum of Natural History and Dept. of Zoology, Gainesville, FL; ANAYA, Federico, Universidad Autonoma, “Tomas Frias”, Potosi, Bolivia; CROFT, Darin, Case Western Reserve Univ., Cleveland, OH; SALAS, Rodolfo, Universidad Nacional Mayor de San Marcos, Lima, Peru New remains of carnivorous marsupials and a new genus of mylodontid sloth were collected during recent National Geographic sponsored fieldwork at Salla (late Oligocene, Bolivia). The marsupial specimens include a partial cranium of a short-faced, dog-like borhyaenid and the mandibles of a much larger beast. The smaller, dog-like borhyaenid was collected from Poco Poconi North, of Unit 3 of the Salla Beds. It appears derived relative to most other borhyaenids in having only two upper premolars. The first upper molar has short, blunt para and metacones and the M2-3 are distinctive in having obliquely oriented carnassial blades. The blade of the M3 is nearly perpendicular to the long axis of the skull. The animal is so distinctive that we have been unable to refer it to any known genus, just referring it for now to the Borhyaeninae. The jaw of a much larger sparassodont, similar to that of Proborhyaena gigantean, was discovered in Pasto Grande at the base of Unit 3. It measures 154 mm from the canine to m4. The hemimandibles are solidly fused at the symphysis. The right lower canine is over 7 cm long and is worn much like the canines of P. gigantea, but it is not as vertically placed as those of P.
    [Show full text]
  • Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
    Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem
    [Show full text]
  • New Insights Into the Anatomy of Extinct Paucituberculatan Marsupials
    Swiss J Palaeontol DOI 10.1007/s13358-014-0063-9 An exceptionally well-preserved skeleton of Palaeothentes from the Early Miocene of Patagonia, Argentina: new insights into the anatomy of extinct paucituberculatan marsupials Analia M. Forasiepi • Marcelo R. Sa´nchez-Villagra • Thomas Schmelzle • Sandrine Ladeve`ze • Richard F. Kay Received: 8 September 2013 / Accepted: 13 February 2014 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2014 Abstract During the Cenozoic paucituberculatans were an anterior semicircular canal (SC) projecting slightly much more diverse taxonomically and ecomorphologically dorsally from the dorsal-most point of the posterior SC, and than the three extant genera of shrew-like marsupials. lateral and posterior SCs projecting laterally to the same Among paucituberculatans, palaeothentids were abundant level. On the basis of postcranial anatomy, previous studies during the Early Miocene, although most of the fossil have demonstrated that P. lemoinei was an agile cursorial remains consist of isolated teeth or fragmentary jaws. We form, an inference supported by study of the new post- describe a new and exceptional partial skeleton of Palaeo- cranial elements. thentes lemoinei (Palaeothentidae), collected from the Santa Cruz Formation (Santacrucian age, Early Miocene) Keywords Marsupialia Á Metatheria Á Cenozoic Á in Patagonia. Whereas the skull of P. lemoinei has more South America Á Skull Á Inner ear Á Postcranium plesiomorphic traits in the face, palate, and cranial vault than that of living paucituberculatans, the dental mor- Abbreviations phology is more derived. The osseous inner ear was examined using micro-CT scanning, revealing a cochlea Institutional abbreviations with 1.9 turns, the presence of a ‘‘second crus commune’’, FMNH Field Museum of Natural History, Chicago, USA IEEUACH Universidad Austral de Chile, A.
    [Show full text]
  • The Interatheriinae Notoungulates from the Middle Miocene Collón Curá Formation in Argentina
    The Interatheriinae notoungulates from the middle Miocene Collón Curá Formation in Argentina Bárbara Vera, Marcelo Reguero, and Laureano González-Ruiz Acta Palaeontologica Polonica 62 (4), 2017: 845-863 doi:https://doi.org/10.4202/app.00373.2017 The Interatheriinae (Notoungulata, Interatheriidae) from the Collón Curá Formation (Colloncuran South American Land Mammal Age, SALMA) are revised here, based on old and new collections from western Neuquén, Río Negro, and Chubut provinces where this geologic unit crops out. After a detailed study of the holotype of Icochilus endiadys, we conclude that its cranial and dental morphology are diagnostic of the genus Protypotherium, and as a result we include I. endiadys in this genus (P. endiadys comb. nov.). Deciduous dentition and postcranial remains are also ascribed to P. endiadys, which allows us to determine its pattern of dental eruption and describe part of its limbs, expanding its diagnosis. In addition, we describe a new species of Protypotherium, P. colloncurensis sp. nov., which differs from P. endiadys in having larger size, a more robust mandible, strongly imbricate upper molars, a well-developed parastyle on P1, a subcircular and non-overlapping p1, a much reduced p2, and a smaller talonid on p3–4. Based on the revision, we identified only one genus of Interatheriinae in the Collón Curá Formation (i.e., Protypotherium). Protypotherium endiadys extends its distribution from Neuquén to Chubut provinces, including Río Negro; the new species, in turn, was only recognized in Río Negro Province, appearing together with P. endiadys in Estancia El Criado, Comallo, and Chico River localities. Discriminant and cladistic analyses were performed including P.
    [Show full text]
  • Pliocene), Falc6n State, Venezuela, Its Relationship with the Asterostemma Problem, and the Paleobiogeography of the Glyptodontinae ALFREDO A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Pal&ontologische Zeitschrift 2008, Vol. 82•2, p. 139-152, 30-06-2008 New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleobiogeography of the Glyptodontinae ALFREDO A. CARLINI, La Plata; ALFREDO E. ZURITA, La Plata; GUSTAVO J. SCILLATO-YANI~, La Plata; RODOLFO S,&,NCHEZ, Urumaco & ORANGEL A. AGUILERA, Coro with 3 figures CARLINI, A.A.; ZURITA,A.E.; SCILLATO-YANI~,G.J.; S.~NCHEZ,R. & AGUILERA,O.A. 2008. New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleo- biogeography of the Glyptodontinae. - Palaontologische Zeitschrift 82 (2): 139-152, 3 figs., Stuttgart, 30. 6. 2008. Abstract: One of the basal Glyptodontidae groups is represented by the Propalaehoplophorinae (late Oligocene - mid- dle Miocene), whose genera (Propalaehoplophorus, Eucinepeltus, Metopotoxus, Cochlops, and Asterostemma) were initially recognized in Argentinian Patagonia. Among these, Asterostemma was characterized by its wide latitudinal distribution, ranging from southernmost (Patagonia) to northernmost (Colombia, Venezuela) South America. How- ever, the generic assignation of the Miocene species from Colombia and Venezuela (A.? acostae, A. gigantea, and A. venezolensis) was contested by some authors, who explicitly accepted the possibility that these species could corre- spond to a new genus, different from those recognized in southern areas. A new comparative study of taxa from Argen- tinian Patagonia, Colombia and Venezuela (together with the recognition of a new genus and species for the Pliocene of the latter country) indicates that the species in northern South America are not Propalaehoplophorinae, but represent the first stages in the cladogenesis of the Glyptodontinae glyptodontids, the history of which was heretofore restricted to the late Miocene - early Holocene of southernmost South America.
    [Show full text]