3Rd Annual Meeting of Women in Cognitive Science – Canada Wednesday July 4, 2018, at 3:00 Pm

Total Page:16

File Type:pdf, Size:1020Kb

3Rd Annual Meeting of Women in Cognitive Science – Canada Wednesday July 4, 2018, at 3:00 Pm CSBBCS & EPS 2018 Meeting July 4-7 2018 St. John’s, NL Table of Contents Welcome ....................................................................................................................................................... 3 Statement of Inclusion .............................................................................................................................. 3 General Information ..................................................................................................................................... 4 Hotel Maps ................................................................................................................................................ 5 Pre-Conference Information ......................................................................................................................... 6 Sponsors ........................................................................................................................................................ 7 CSBBCS 2018 Award Information.................................................................................................................. 8 2018 Donald O. Hebb Distinguished Contribution Award Winner ........................................................... 8 2018 CSBBCS Vincent Di Lollo Early Career Award Winner .................................................................... 10 2017 CSBBCS/CPA CJEP Best Article Award Winner ............................................................................... 11 2018 Richard Tees Distinguished Leadership Award Winner ................................................................. 12 EPS President’s Address .............................................................................................................................. 13 Schedule Summary ..................................................................................................................................... 14 Wednesday, July 4 .................................................................................................................................. 14 Thursday, July 5 ....................................................................................................................................... 14 Friday, July 6 ............................................................................................................................................ 15 Saturday, July 7 ....................................................................................................................................... 16 Talk Schedule .............................................................................................................................................. 17 Thursday, July 5 Morning ........................................................................................................................ 17 Thursday, July 5 Afternoon ..................................................................................................................... 18 Friday, July 6 Morning 1 .......................................................................................................................... 19 Friday, July 6 Morning 2 .......................................................................................................................... 21 Friday, July 6 Afternoon .......................................................................................................................... 21 Saturday, July 7 Morning ........................................................................................................................ 22 Saturday, July 7 Afternoon 1 ................................................................................................................... 23 Saturday, July 7 Afternoon 2 ................................................................................................................... 24 Poster Schedule .......................................................................................................................................... 26 Poster Session 1 ...................................................................................................................................... 26 Poster Session 2 ...................................................................................................................................... 29 Poster Session 3 ...................................................................................................................................... 32 Abstracts ..................................................................................................................................................... 35 Invited Symposia ..................................................................................................................................... 35 Papers ..................................................................................................................................................... 38 Posters .................................................................................................................................................... 78 2 CSBBCS & EPS 2018 Meeting July 4-7 2018 St. John’s, NL Welcome Welcome to CSBBCS/EPS 2018! As chair of the organizing committee for the 28th Annual meeting of The Canadian Society for Brain, Behaviour and Cognitive Science, it gives me great pleasure to welcome you to the St. John's for this important scientific conference. As in years past, this meeting represents a vital opportunity for researchers in a broad array of areas in experimental psychology, neuroscience, and allied disciplines to share their ideas, form new collaborative relationships, and pro- mote our scientific disciplines. I would like to thank all the people whose hard work and dedication have made this meeting possible. It has been my great pleasure to work with an amazing crew of enthusiastic fellow faculty and students. Thank you all for putting in so many hours on this project when you no doubt had many other demands on your time. I would also like to thank our sponsors, which include Memorial University of Newfoundland, MIT Press, SR Research, MUN's Graduate Student Union, Memorial University Student Union, MagStim, Roxon, Norton, Brain Vision. The financial support of these organizations is what has enabled us to put together a conference that we hope will be as entertaining as it is edifying. Having said all this, the success of this kind of meeting rests above all on the participation of its attendees and the quality and diversity of your scientific contributions. For this, the organizers of the conference are deeply grateful to you all. I hope you will find the meeting an enjoyable and valuable opportunity to share your ideas and learn those of others. Sincerely, Aimée Surprenant, Chair of the CSBBCS/EPS 2018 Organization Committee, Professor, Psychology, Memorial University of Newfoundland. Facebook: Canadian Society for Brain, Behaviour, and Cognitive Science Twitter: @OfficialCSBBCS Instagram: @officialCSBBCS Thanks to the Conference committee: Kathleen Hourihan, Ian Neath, Carol Sullivan, Jon Fawcett, Darcy Hallett, Jacqueline Blundell, Chrissy Chubala, Victoria Kavanagh, and all the Volunteers! Thanks also to the EPS committee, Anna Weighall and John Towse! Statement of Inclusion CSBBCS is committed to providing a welcoming and harassment-free environment for participants of all races, gender identities, sexual orientations, physical abilities, physical appearances, and beliefs. We ask that all participants refrain from demeaning, discriminatory, or harassing behaviour and speech. Harassment includes, but is not limited to: deliberate intimidation; stalking; unwanted photography or recording; sustained or willful disruption of talks or other events; inappropriate physical contact; use of sexual or discriminatory imagery, comments, or jokes; and unwelcome sexual attention. 3 CSBBCS & EPS 2018 Meeting July 4-7 2018 St. John’s, NL General Information Located at 120 New Gower Street, St. John's, NL, the Delta Hotel is steps from famous George Street and connected by overhead walkway to Mile One Centre and St. John's Convention Centre, the hotel offers the perfect location from which to explore the historic city including national historic sites Signal Hill and Cape Spear. Staying in residence? It is approximately 40 minutes to walk from MUN to the Delta, and it is uphill both ways! The #10 Metrobus goes from the Student Centre to the Delta. The fare is $2.50 per ride and you can buy a refillable MetroCard at the student centre. Registration is in the Crush Lobby of the Delta (outside Salon A) from 14:00-17:00 on Wednesday, July 4, 8:00 -14:00 on Thursday, July 5, St. Mary's Bay Room all other times. Coffee will be available mornings of July 5, 6, and 7 in Crush Lobby (outside of Salon A) from 8:00-8:50. Poster sessions will be held in Salons BCD. A cash bar will be available at all poster sessions. Talks are scheduled for 15 minutes of presentation with 5 minutes for questions. Talk rooms will have a Windows laptop with PowerPoint available; connections with VGA and HDMI will be available for laptops. Please load your talk onto the computer in the room before the session begins (or be ready with your laptop). The banquet will be held Thursday, July 5 (19:30-21:30) in Salon A. The Bonavista Bayroom is reserved as a nursey/infant care room. Comfortable seating and a change table will be provided. Free Wi-fi will be available in all
Recommended publications
  • Latinos: HCHS/SOL Results Neil Schneiderman10 Diabetes Care 2018;41:1501–1509 |
    Diabetes Care Volume 41, July 2018 1501 Hector M. Gonzalez,´ 1 Wassim Tarraf,2 Metabolic Syndrome and Priscilla Vasquez,´ 1 Ashley H. Sanderlin,3 Natalya I. Rosenberg,4 Sonia Davis,5 Neurocognition Among Diverse Carlos J. Rodr´ıguez,6 Linda C. Gallo,7 Bharat Thyagarajan,8 Martha Daviglus,4 Middle-Aged and Older Hispanics/ Tasneem Khambaty,9 Jianwen Cai,5 and Latinos: HCHS/SOL Results Neil Schneiderman10 Diabetes Care 2018;41:1501–1509 | https://doi.org/10.2337/dc17-1896 OBJECTIVE Hispanics/Latinos have the highest risks for metabolic syndrome (MetS) in the U.S. and are also at increased risk for Alzheimer disease. In this study, we exam- ined associations among neurocognitive function, MetS, and inflammation 1Department of Neurosciences and Shiley- ’ among diverse middle-aged and older Hispanics/Latinos. Marcos Alzheimer s Disease Research Center, University of California, San Diego, La Jolla, CA 2Institute of Gerontology and Department of RESEARCH DESIGN AND METHODS Healthcare Sciences, Wayne State University, Cross-sectional data (2008–2011) from theHispanic Community Health Study/Study Detroit, MI of Latinos (HCHS/SOL) were analyzed to examine associations between neuro- 3Section of Gerontology and Geriatric Medicine, cognition and MetS among diverse Hispanics/Latinos (N = 9,136; aged 45–74 years). Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 4Institute for Minority Health Research, College RESULTS of Medicine, University of Illinois at Chicago, MetS status was associated with lower global neurocognition, mental status, verbal Chicago, IL learning and memory, verbal fluency, and executive function. Age significantly 5Collaborative Studies Coordinating Center, De- modified the associations between MetS and learning and memory measures.
    [Show full text]
  • Studies of Brain Structure Boost ‘Connectivity Theory’
    Spectrum | Autism Research News https://www.spectrumnews.org NEWS Studies of brain structure boost 'connectivity theory' of autism BY VIRGINIA GEWIN 21 JULY 2009 Broken bridges: The conduits (green) that connect the brain's large central nerve bundle to outer tissue are abnormally narrow in autistic brains, which may dampen communication between distant brain regions. The brains of people with autism have structural abnormalities that disrupt normal connections between brain regions and impede the flow of information across the brain. That's the conclusion of a 20-year-old theory supported by several new, independent studies. The most recent report, published in the June issue of the Journal of Autism and Developmental Disorders, focuses on the corpus callosum — the thick bundle of nerve fibers that bridges the left and right hemispheres of the brain. The researchers found that the corpus callosum has seven percent less volume in the brains of people with autism than in those of healthy controls1. What's more, the lower the volume of the corpus callosum, the lower a participant's score on tests of planning and problem solving. Another study, published in the May issue of the journal, found that the gyral window — the conduit for nerve fibers running between the corpus callosum and the cortex — is abnormally narrow in autistic brains2. This smaller passageway could impinge on normal nerve transmission. 1 / 6 Spectrum | Autism Research News https://www.spectrumnews.org "These papers demonstrate that the field is moving from basic volumetric measures of brain regions to more specific measures of the structure and shape of multiple brain regions in our search for abnormalities," says Antonio Hardan, associate professor of psychiatry at Stanford University's School of Medicine and lead investigator of the first study.
    [Show full text]
  • IMFAR 2004 Program Book
    2004 PROGRAM Friday & Saturday May 7 – 8, 2004 The Hyatt Hotel Sacramento, California 1 I M F A R Acknowledgements Board Members Program Committee President David Amaral Linda Daly Marian Sigman, PhD University of California, Davis University of California, Los MIND Institute Petrus de Vries Angeles Cambridge University Anthony Bailey Oxford University Glen Dunlap Vice President Sally Rogers, PhD University of South Florida Grace Baranek University of California, Davis University of North Carolina at MIND Institute Chapel Hill Deborah Fein University of Connecticut Treasurer Simon Baron-Cohen Edwin Cook, MD Cambridge University Eric Fombonne University of Chicago McGill University Marlene Behrmann Secretary Carnegie Mellon University Christopher Gillberg Diane Chugani, PhD Hill Goldsmith Wayne State University Susan Bookheimer University of California, Los University of Wisconsin Program Chair Angeles Robin Hansen Nancy Minshew, MD University of California, Davis University of Pittsburgh Medical Dermot Bowler City University Center Sandra Harris Rutgers University Membership Chair Marie Bristol-Power Robert Schultz, PhD Robert Hendren Yale University Jacob Burak University of California, Davis McGill University Nominations Chair Susan Hyman Joseph Piven, MD Tony Charman University of Rochester University of North Carolina University College London Chapel Hill Bob Joseph Diane Chugani Boston University School of Publications Chair Wayne State University/ Medicine David Amaral, PhD Children’s Hospital of Michigan University of California,
    [Show full text]
  • Neurocognition of Major-Minor and Consonance-Dissonance
    Processing Major-Minor and Consonance-Dissonance 387 NEUROCOGNITION OF MAJOR-MINOR AND CONSONANCE-DISSONANCE PAULA VIRTALA &MARI TERVANIEMI even widened to infancy, and behavioral and brain stud- University of Helsinki, Helsinki, Finland ies have demonstrated many music-related auditory skills during the first months of life (Hannon, & Trainor MAJOR-MINOR AND CONSONANCE-DISSONANCE ARE 2007; Trainor & Corrigall, 2010; Trehub, 2010). Infants two profound elements of Western tonal music, and with limited exposure to music of their culture offer an have strong affective connotations for Western listeners. opportunity to study the earliest skills for music proces- This review summarizes recent evidence on the neu- sing, serving as candidates for innate universal abilities rocognitive basis of major-minor and consonance- which all music cultures build on. dissonance by presenting studies on their processing According to present understanding, the develop- and how it is affected by maturation, musical encul- ment of music processing is based on, first, early audi- turation, and music training. Based on recent findings tory skills that serve as building blocks for music in the field, it is proposed that both classifications, processing, and second, the process of musical encul- particularly consonance-dissonance, have partly turation that leads to facilitated processing of music of innate, biologically hard-wired properties. These prop- one’s own culture due to exposure without explicit erties can make them discriminable even for newborn training (Hannon & Trainor, 2007). This development infants and individuals living outside the Western is modified by several individual factors such as musical music culture and, to a small extent, reflect their affec- aptitude, cognitive abilities, and motivation, extending tive connotations in Western music.
    [Show full text]
  • Dopamine Modulation of Learning and Memory in the Prefrontal Cortex: Insights from Studies in Primates, Rodents, and Birds
    Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Puig, M. Victoria, Jonas Rose, Robert Schmidt, and Nadja Freund. “Dopamine Modulation of Learning and Memory in the Prefrontal Cortex: Insights from Studies in Primates, Rodents, and Birds.” Front. Neural Circuits. 8 (August 5, 2014). As Published http://dx.doi.org/10.3389/fncir.2014.00093 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/90936 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ REVIEW ARTICLE published: 05 August 2014 doi: 10.3389/fncir.2014.00093 Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds M. Victoria Puig 1*, Jonas Rose 1,2 *, Robert Schmidt 3 and Nadja Freund 4 1 The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA 2 Animal Physiology, Institute of Neurobiology, University of Tübingen,Tübingen, Germany 3 BrainLinks-BrainTools, Department of Biology, Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany 4 Department of Psychiatry and Psychotherapy, University of Tübingen,Tübingen, Germany Edited by: In this review, we provide a brief overview over the current knowledge about the role of Guillermo Gonzalez-Burgos, dopamine transmission in the prefrontal cortex during learning and memory. We discuss University of Pittsburgh, USA work in humans, monkeys, rats, and birds in order to provide a basis for comparison Reviewed by: across species that might help identify crucial features and constraints of the dopaminergic Onur Gunturkun, Ruhr University Bochum, Germany system in executive function.
    [Show full text]
  • Is Neurocognition Crucial in STEM Education in the Present Scenario? S.Amutha* Bharathidasan University, Tiruchirappalli *Corresponding Author: S
    2020 Review Article Journal of Cognitive Neuropsychology Vol.4 No.2 Is Neurocognition Crucial in STEM Education in the Present Scenario? S.Amutha* Bharathidasan University, Tiruchirappalli *Corresponding author: S. Amutha, Bharathidasan University, Tiruchirappalli, E-mail: [email protected] Tel No: +91 9443145648 1. Abstract Countries around the globe moving away from traditional rote and regurgitation learning to experiential learning. Science, Technology, Engineering and Mathematics are the subjects interlinked with each other. Most of the countries in the world prefer to adopt STEM (Science, Technology, Engineering, and Mathematics) education because it infuses every part of our lives. Without Science and Technology our survival in this globe is questioned. Technology is constantly escalating into every aspect of our lives. Engineering is the basic subject for designing the houses, machineries, construction etc. Basically everyone need Mathematics in every occupation and every activity of lives. STEM based curriculum comprise of hands-on and minds-on activities for the student. By divulging students to explore STEM-related concepts, they will develop a passion towards it. Nevertheless of voluminous initiatives by all the countries, are on the way to impart STEM education to students due to their difference in perception, knowledge and memory. Neurocognition is the process which activates the cognitive process. Depending on the needs of the individual Neurocognitive strategies will restructure or modify their thought, feelings, perceptions and emotions. This article addresses the theoretical back drop of Neurocognition in education and how the issues related to educational performance can be solved with the help of Neurocognitive practice. 2. Keywords: Science, Technology, Engineering, Mathematics, (STEM) Brain, Neurocognition 3.
    [Show full text]
  • Neurocognition in Psychometrically Defined College Schizotypy Samples: We Are NOT Measuring the ''Right Stuff''
    Journal of the International Neuropsychological Society (2013), 19, 1–14. Copyright E INS. Published by Cambridge University Press, 2013. doi:10.1017/S135561771200152X 1 Neurocognition in Psychometrically Defined College 2 Schizotypy Samples: We Are NOT Measuring the 3 ‘‘Right Stuff’’ 4 Charlotte A. Chun, Kyle S. Minor, AND Alex S. Cohen 5 Department of Psychology, Louisiana State University, Baton Rouge, Louisiana 6 (RECEIVED November 11, 2011; FINAL REVISION October 4, 2012; ACCEPTED October 4, 2012) 7 Abstract 8 Although neurocognitive deficits are an integral characteristic of schizophrenia, there is inconclusive evidence as to 9 whether they manifest across the schizophrenia-spectrum. We conducted two studies and a meta-analysis comparing 10 neurocognitive functioning between psychometrically defined schizotypy and control groups recruited from a college 11 population. Study One compared groups on measures of specific and global neurocognition, and subjective and objective 12 quality of life. Study Two examined working memory and subjective cognitive complaints. Across both studies, the 13 schizotypy group showed notably decreased subjective (d 5 1.52) and objective (d 5 1.02) quality of life and greater 14 subjective cognitive complaints (d 5 1.88); however, neurocognition was normal across all measures (d’s , .35). Our 15 meta-analysis of 33 studies examining neurocognition in at-risk college students revealed between-group differences in 16 the negligible effect size range for most domains. The schizotypy group demonstrated deficits of a small effect size for 17 working memory and set-shifting abilities. Although at-risk individuals report relatively profound neurocognitive deficits 18 and impoverished quality of life, neurocognitive functioning assessed behaviorally is largely intact.
    [Show full text]
  • Neurocognitive and Social Cognitive Correlates of Formal Thought Disorder in Schizophrenia Patients
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Veterans Affairs Staff Publications U.S. Department of Veterans Affairs 2006 Neurocognitive and social cognitive correlates of formal thought disorder in schizophrenia patients Kenneth L. Subotnik University of California - Los Angeles, [email protected] Keith H. Nuechterlein University of California - Los Angeles, [email protected] Michael F. Green University of California - Los Angeles William P. Horan University of California - Los Angeles, [email protected] Tasha M. Nienow University of California - Los Angeles See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/veterans Subotnik, Kenneth L.; Nuechterlein, Keith H.; Green, Michael F.; Horan, William P.; Nienow, Tasha M.; Ventura, Joseph; and Nguyen, Annie T., "Neurocognitive and social cognitive correlates of formal thought disorder in schizophrenia patients" (2006). U.S. Department of Veterans Affairs Staff Publications. 76. https://digitalcommons.unl.edu/veterans/76 This Article is brought to you for free and open access by the U.S. Department of Veterans Affairs at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Department of Veterans Affairs Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Kenneth L. Subotnik, Keith H. Nuechterlein, Michael F. Green, William P. Horan, Tasha M. Nienow, Joseph Ventura, and Annie T. Nguyen This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ veterans/76 Schizophrenia Research 85 (2006) 84–95 www.elsevier.com/locate/schres Neurocognitive and social cognitive correlates of formal thought disorder in schizophrenia patients Kenneth L.
    [Show full text]
  • Computerized Neurocognitive Scanning: II
    Computerized Neurocognitive Scanning: II. The Profile of Schizophrenia Ruben C. Gur, Ph.D., J. Daniel Ragland, Ph.D., Paul J. Moberg, Ph.D., Warren B. Bilker, Ph.D., Christian Kohler, M.D., Steven J. Siegel, M.D., Ph.D., and Raquel E. Gur, M.D., Ph.D. Cognitive dysfunction in schizophrenia is well established neurocognitive scan and clinical variables, including with neuropsychological batteries, which have assessed premorbid adjustment, onset age, illness duration, quality multiple domains indicating diffuse deficits especially in of life, and severity of negative symptoms. These processing related to frontotemporal systems. Two studies correlations were higher and more prevalent in women than are reported examining the feasibility of the computerized men, who showed correlations predominantly for speed neurocognitive scan to assess differential deficits in rather than accuracy. Neuroleptic exposure was associated schizophrenia. In Study 1, we tested 53 patients and 71 with poorer performance only for speed of memory controls with the traditional and computerized assessments processing, and in men, this association was seen only for counterbalanced in order. Both showed comparable typical neuroleptics. We conclude that the computerized generalized impairment in schizophrenia with differential neurocognitive scan can be applied reliably in people with deficits in executive functions and memory. The profile was schizophrenia, yielding data that support its construct and replicated in Study 2 in a new sample of 68 patients and 37 criterion validity. controls, receiving only the computerized scan. The [Neuropsychopharmacology 25:777–788, 2001] combined sample showed robust correlations between © 2001 American College of Neuropsychopharmacology. performance on both speed and accuracy measures of the Published by Elsevier Science Inc.
    [Show full text]
  • IGNITE): Protocol T ⁎ Kirk I
    Contemporary Clinical Trials 85 (2019) 105832 Contents lists available at ScienceDirect Contemporary Clinical Trials journal homepage: www.elsevier.com/locate/conclintrial Investigating Gains in Neurocognition in an Intervention Trial of Exercise (IGNITE): Protocol T ⁎ Kirk I. Ericksona,b, , George A. Grovea,Jeffrey M. Burnsc, Charles H. Hillmand,e, Arthur F. Kramerd,f, Edward McAuleyg, Eric D. Vidonic, James T. Beckera,h,i, Meryl A. Buttersh, Katerina Graya, Haiqing Huanga, John M. Jakicicj, M. Ilyas Kambohk, Chaeryon Kangl, William E. Klunkh, Phil Leem, Anna L. Marslanda, Joseph Mettenburgn, Renee J. Rogersj, Chelsea M. Stillmana, Bradley P. Suttonf, Amanda Szabo-Reedo, Timothy D. Verstynenp, Jennifer C. Watta, Andrea M. Weinsteinh, Mariegold E. Wollama a Department of Psychology, University of Pittsburgh, USA. b Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Australia c Department of Neurology, University of Kansas Medical Center, USA d Department of Psychology, Northeastern University, USA e Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, USA f Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, USA g Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, USA h Department of Psychiatry, University of Pittsburgh, USA i Department of Neurology, University of Pittsburgh, USA j Department of Health and Physical Activity, University of Pittsburgh, USA
    [Show full text]
  • Freeman’S Review
    Karl Pribram’s Book 1 Walter Freeman’s Review BOOK REVIEW Title: The Form Within: My Point of View Author: Karl H Pribram MD Publisher: Westport CT: Prospecta Press ISBN: 978-1935212-80-5 Date: 2013 Reviewer: Walter J Freeman MD Dept of Molecular & Cell Biology University of California at Berkeley Berkeley CA 94720 USA Phone 1-510-642-4220 [email protected] Length: 1,997 words, 4 pages 22 March 2014 Cognitive neuroscience is in disarray. The neural mechanisms of locomotion, navigation, and manipulation of objects are well in hand, as witnessed by advances in information technology, robotics and space exploration. What we lack is an understanding of the mechanisms of mind. The urgency of perceived need is attested by the massive funding allocated for brain research in programs in Europe, North America and Asia. The programs are modeled on the Manhattan Project and the Human Genome Project, despite the difference that while the theories of nuclear fission and of the double helix were well enough developed to support large-scale engineering applications, in contrast, neuroscientists cannot tell us how minds work. For examples, we do not understand how brains make and use symbols, or how natural languages work, or how to solve the framing problem, or how to illuminate the mysteries of consciousness. At best we can enhance our existing techniques to increase our rates of data collection and facilitate our large-scale storage and retrieval by data mining for analysis using existing theory. Karl Pribram believes there is a better way than megaprojects to learn how minds work.
    [Show full text]
  • Executive Neurocognition, Memory Systems, and Borderline Personality Disorder
    Clinical Psychology Review 26 (2006) 346–375 Executive neurocognition, memory systems, and borderline personality disorder Eric A. Fertucka,T, Mark F. Lenzenwegerc, John F. Clarkind, Simone Hoermanne, Barbara Stanleya,b aNew York State Psychiatric Institute, Columbia University, College of Physicians and Surgeons, United States bJohn Jay College, City University of New York, United States cState University of New York at Binghamton, United States dWeill Medical College of Cornell University, United States eColumbia University Medical Center, United States Received 13 April 2004; accepted 9 May 2005 Abstract Borderline Personality Disorder (BPD) is a common, disabling, and burdensome psychiatric condition. It is characterized by turbulent fluctuations of negative emotions and moods, unstable and conflictual interpersonal relationships, an incoherent and often contradictory sense of self, and impulsive, potentially lethal self-injurious behaviors. The neurobehavioral facets of BPD have not been extensively studied. However, clinical theoreticians and researchers have proposed that the symptoms and behaviors of BPD are, in part, associated with disruptions in basic neurocognitive processes. This review summarizes and evaluates research that has investigated the relationship between executive neurocognition, memory systems, and BPD. Three historical phases of research are delineated and reviewed, and the methodological and conceptual challenges this body of investigation highlights are discussed. Laboratory-based assessment of executive neurocognition and memory systems is integral to an interdisciplinary approach to research in BPD. Such an approach holds promise in elucidating the T Corresponding author. Tel.: +1 212 543 6926; fax: +1 212 543 6946. E-mail address: [email protected] (E.A. Fertuck). 0272-7358/$ - see front matter D 2005 Elsevier Ltd.
    [Show full text]