Cellular Senescence Bypass Screen Identifies New Putative Tumor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Database of Cattle Candidate Genes and Genetic Markers for Milk Production and Mastitis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central doi:10.1111/j.1365-2052.2009.01921.x Database of cattle candidate genes and genetic markers for milk production and mastitis J. Ogorevc*, T. Kunej*, A. Razpet and P. Dovc Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia Summary A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mam- mary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological func- tions in functional networks. -
Analysis of Trans Esnps Infers Regulatory Network Architecture
Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation. -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Effects of B-K-Casein (CSN2-CSN3) Haplotypes and B-Lactoglobulin
J. Dairy Sci. 93 :3797–3808 doi: 10.3168/jds.2009-2778 © American Dairy Science Association®, 2010 . Effects of β-κ-casein (CSN2-CSN3) haplotypes and β-lactoglobulin (BLG) genotypes on milk production traits and detailed protein composition of individual milk of Simmental cows 1 V. Bonfatti ,* G. Di Martino ,* A. Cecchinato ,* D. Vicario ,† and P. Carnier * * Department of Animal Science, University of Padova, viale dell’Università 16, 35020, Legnaro, Padova, Italy † Italian Simmental Cattle Breeders Association, via Nievo 19, 33100, Udine, Italy ABSTRACT and αS1-CN. Estimated additive genetic variance for investigated traits ranged from 14 to 39% of total vari- The aim of this study was to investigate the effects ance. Increasing the frequency of specific genotypes or of CSN2-CSN3 (β-κ-casein) haplotypes and BLG haplotypes by selective breeding might be an effective (β-lactoglobulin) genotypes on milk production traits, way to change milk protein composition. content of protein fractions, and detailed protein compo- Key words: casein haplotypes , BLG genotype , milk sition of individual milk of Simmental cows. Content of protein composition , Simmental the major protein fractions was measured by reversed- phase HPLC in individual milk samples of 2,167 cows. INTRODUCTION Protein composition was measured as percentage of each casein (CN) fraction to total CN and as percent- Most research concerning milk protein polymor- age of β-lactoglobulin (β-LG) to total whey protein. phisms has focused on the associations of CSN3 (κ-CN) Genotypes at CSN2, CSN3, and BLG were ascertained and BLG (β-LG) polymorphisms with milk production by reversed-phase HPLC, and CSN2-CSN3 haplotype traits, coagulation time, curd firmness, and cheese yield. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0186843 A1 ZHANG Et Al
US 2014O186843A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0186843 A1 ZHANG et al. (43) Pub. Date: Jul. 3, 2014 (54) METHODS, SYSTEMS, AND APPARATUS FOR (22) Filed: Dec. 12, 2013 IDENTIFYING TARGET SEQUENCES FOR CAS ENZYMES OR CRISPR-CAS SYSTEMIS Related U.S. Application Data FORTARGET SEQUENCES AND (60) Provisional application No. 61/736,527, filed on Dec. CONVEYING RESULTS THEREOF 12, 2012, provisional application No. 61/748,427, filed on Jan. 2, 2013, provisional application No. (71) Applicants: Massachusetts Institute of Technology, 61/791,409, filed on Mar. 15, 2013, provisional appli Cambridge, MA (US): THE BROAD cation No. 61/835,931, filed on Jun. 17, 2013. INSTITUTE, INC., Cambridge, MA (US) Publication Classification (72) Inventors: Feng ZHANG, Cambridge, MA (US); (51) Int. C. Naomi HABIB, Cambridge, MA (US) CI2O I/68 (2006.01) (52) U.S. C. (73) Assignees: Massachusetts Institute of Technology, CPC ...................................... CI2O I/686 (2013.01) Cambridge, MA (US): THE BROAD USPC ....................................... 435/6.12: 435/287.2 INSTITUTE, INC., Cambridge, MA (US) (57) ABSTRACT Disclosed are locational or positional methods concerning (21) Appl. No.: 14/104,900 CRISPR-Cas systems, and apparatus therefor. Patent Application Publication Jul. 3, 2014 Sheet 1 of 50 US 2014/O186843 A1 s g:23:3:3: 83: FIG. 1 Patent Application Publication Jul. 3, 2014 Sheet 2 of 50 US 2014/O186843 A1 §§§§ §§§§§§ Patent Application Publication Jul. 3, 2014 Sheet 3 of 50 US 2014/O186843 A1 NLs SpCass GFP SpCass GFP NS NLS Spass GFP LS 8 N.S. tery RNase Sp RNase is Cerry NS FG. -
Genome Variants Associated with RNA Splicing Variation in Bovine Are
bioRxiv preprint doi: https://doi.org/10.1101/220251; this version posted April 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genome variants associated with RNA splicing variation in bovine are 2 extensively shared between tissues 3 Ruidong Xiang1,2,*, Ben J. Hayes2,3, Christy J. Vander Jagt2, Iona M. MacLeod2, Majid 4 Khansefid2, Phil J. Bowman2,6, Zehu Yuan2, Claire P. Prowse-Wilkins2, Coralie M. Reich2, 5 Brett A. Mason2, Josie B. Garner4, Leah C. Marett4, Yizhou Chen5, Sunduimijid Bolormaa2, 6 Hans D. Daetwyler2,6, Amanda J. Chamberlain2 and Michael E. Goddard1,2 7 1Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC 3010, 8 Australia. 2Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, 9 Australia. 3Queensland Alliance for Agriculture and Food Innovation, Centre for Animal 10 Science, University of Queensland, St. Lucia, QLD 4067, Australia. 4Agriculture Victoria, 11 Dairy Production Science, Ellinbank, VIC, 3821, Australia. 5Elizabeth Macarthur 12 Agricultural Institute, New South Wales Department of Primary Industries, Camden, NSW 13 2570, Australia. 6School of Applied Systems Biology, La Trobe University, Bundoora, VIC 14 3083, Australia. 15 *Corresponding author: Dr. Ruidong Xiang; 16 Ruidong Xiang: [email protected]; 17 Ben J. Hayes: [email protected]; 18 Christy J. Vander Jagt: [email protected]; 19 Iona M. MacLeod: [email protected]; 20 Majid Khansefid: [email protected]; 21 Phil J. -
Transcriptome Signature of the Lactation Process in a Fat-Tailed Sheep Identifes with Integrative Approach of RNA-Seq and Supervised Machine Learning Models
Transcriptome signature of the lactation process in a fat-tailed sheep identies with integrative approach of RNA-Seq and Supervised Machine Learning models Mohammad Farhadian ( [email protected] ) University of Tabriz Seyed Abbas Rafat University of Tabriz Bahman Panahi ABRII Esmaeil Ebrahimie The University of Adelaide Research article Keywords: RNA-Seq, Milk, Sheep, Gene network, Gene Ontology Posted Date: July 18th, 2019 DOI: https://doi.org/10.21203/rs.2.11678/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/26 Abstract Background The mammary gland is a vital organ in mammalian that undergoes a substantial physiological transformation during the lactation process. Understanding the underlying molecular mechanism of the lactation process in the mammary gland is essential to unravel of the complexity of milk production process. This study was investigated the transcriptome proles of milk between two time point of lactation (day 20 as before peak time point (BF) and day 70 as after peak(AF)) in Iranian fat- tailed Ghezel sheep breed. Functional impacts of differentially expressed genes (DEGs) between two time points of the lactation were surveyed with Gene Ontology (GO) and Protein-Protein Interaction (PPI) network analysis. Moreover, to identify the transcriptome signature of the lactation process, supervised machine learning algorithms were integrated. Results Totally, 75 genes were dened as DEGs between BF and AF of lactation. Gene ontology of DEGs mainly enriched in metabolic process and oxidative phosphorylation. Moreover, PPI networks analysis highlighted the contribution of peroxisome proliferator- activated receptors (PPAR) signaling in the lactation process, oxidative phosphorylation and metabolic pathways. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
BRF1 Mutations Alter RNA Polymerase III–Dependent Transcription and Cause Neurodevelopmental Anomalies
Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Research BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies Guntram Borck,1,20 Friederike Hog,€ 2,20 Maria Lisa Dentici,3,20 Perciliz L. Tan,4,20 Nadine Sowada,1 Ana Medeira,5 Lucie Gueneau,6 Holger Thiele,7 Maria Kousi,4 Francesca Lepri,3 Larissa Wenzeck,2 Ian Blumenthal,8 Antonio Radicioni,9 Tito Livio Schwarzenberg,10 Barbara Mandriani,11,12 Rita Fischetto,13 Deborah J. Morris-Rosendahl,14 Janine Altmuller,€ 7,15 Alexandre Reymond,6 Peter Nurnberg,€ 7,16,17 Giuseppe Merla,11 Bruno Dallapiccola,3,21 Nicholas Katsanis,4,21 Patrick Cramer,18,21 and Christian Kubisch1,19,21 1Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany; 2Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universitat€ Munchen,€ 81377 Munich, Germany; 3Bambino GesuChildren’s Hospital, IRCCS, 00165 Rome, Italy; 4Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA; 5Servic¸o de Genetica, Departamento de Pediatria, Hospital S. Maria, CHLN, 1649-035 Lisboa, Portugal; 6Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; 7Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; 8Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 9Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; 10Department of Neonatology, Sapienza University, 00161 Rome, Italy; 11IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy; 12PhD Program, Molecular Genetics applied to Medical Sciences, University of Brescia, 25121 Brescia, Italy; 13U.O. -
BRF1 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap14801c
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 BRF1 Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14801c Specification BRF1 Antibody (Center) - Product Information Application WB,E Primary Accession Q92994 Other Accession NP_663718.1, NP_001510.2 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 73840 Antigen Region 314-342 BRF1 Antibody (Center) - Additional Information BRF1 Antibody (Center) (Cat. #AP14801c) Gene ID 2972 western blot analysis in Hela cell line lysates (35ug/lane).This demonstrates the BRF1 Other Names antibody detected the BRF1 protein (arrow). Transcription factor IIIB 90 kDa subunit, TFIIIB90, hTFIIIB90, B-related factor 1, BRF-1, hBRF, TAF3B2, TATA box-binding BRF1 Antibody (Center) - Background protein-associated factor, RNA polymerase III, subunit 2, BRF1, BRF, GTF3B, TAF3B2, This gene encodes one of the three subunits TAF3C of the RNA polymerase III transcription factor complex. Target/Specificity This BRF1 antibody is generated from This complex plays a rabbits immunized with a KLH conjugated central role in transcription initiation by RNA synthetic peptide between 314-342 amino polymerase III on acids from the Central region of human genes encoding tRNA, 5S rRNA, and other BRF1. small structural RNAs. The gene product belongs to the TF2B family. Two Dilution alternatively spliced WB~~1:1000 variants encoding different isoforms, that function at different Format promoters transcribed by RNA polymerase III, Purified polyclonal antibody supplied in PBS have been identified. with 0.09% (W/V) sodium azide. This Other transcript variants are possible, but their antibody is purified through a protein A full-length column, followed by peptide affinity natures have not been completely purification. -
Structural Basis of Ty3 Retrotransposon Integration at RNA Polymerase III-Transcribed Genes
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453949; this version posted July 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes Guillermo Abascal-Palacios1*, Laura Jochem1, Carlos Pla-Prats2, Fabienne Beuron1 and Alessandro Vannini1,3* Affiliations: 1Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom. 2Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. 3Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy *Corresponding authors ABSTRACT Retrotransposons are endogenous elements that have the ability to mobilise their DNA and integrate at different locations in the host genome. In budding yeast, the Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase III-transcribed genes, such as the genes of transfer RNAs, representing a paradigm for specific targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å-resolution of an active Ty3 strand-transfer complex (Ty3 intasome) caught in the act of integrating onto a specific tRNA gene bound to the RNA Polymerase III general transcription factor TFIIIB, which is required for Ty3 specific targeting. The structure unravels the molecular mechanisms underlying Ty3 integration specificity at RNA Polymerase III-transcribed genes and sheds light into the architecture of a retrotransposon integration machinery during the process of strand transfer at a genomic locus. The Ty3 intasome establishes contacts with a region of the TATA-binding protein (TBP), a subunit of TFIIIB, which is blocked by the ubiquitous transcription regulator negative cofactor 2 (NC2) in RNA Pol II-transcribed genes. -
BRF1/2 Antibody A
C 0 2 - t BRF1/2 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 1 Web: [email protected] 1 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Mk Endogenous 40 to 50, 62 Rabbit P47974, Q07352 678, 677 Product Usage Information 7. Nair, A.P. et al. (1994) Nature 369, 239-242. 8. Carballo, E. et al. (1998) Science 281, 1001-1005. Application Dilution 9. Schmidlin, M. et al. (2004) EMBO J. 23, 4760-4769. Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity This antibody detects endogenous levels of total BRF1 and BRF2 proteins. Species Reactivity: Human, Mouse, Rat, Monkey Species predicted to react based on 100% sequence homology: Chicken, Bovine Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the carboxy terminus of human BRF1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background Butyrate response factor 1 (BRF1; also known as EGF response factor 1 [ERF1], TIS11B, ZFP36L1) and butyrate response factor 2 (BRF2; also known as EGF response factor 2 [ERF2], TIS11D, ZFP36L2) both belong to the TIS11 family of CCCH zinc-finger proteins (1). This family of proteins, which also includes tristetraprolin (TTP), bind to AU- rich elements (ARE) found in the 3'-untranslated regions of mRNAs and promote de- adenylation and rapid degradation by the exosome (2,3).