2010 Roster (V: Indicates Voting Member of Bog)

Total Page:16

File Type:pdf, Size:1020Kb

2010 Roster (V: Indicates Voting Member of Bog) IEEE Information Theory Society 2010 Roster (v: indicates voting member of BoG) Officers Frank Kschischang President v Giuseppe Caire First Vice President v Muriel M´edard Second Vice President v Aria Nosratinia Secretary v Nihar Jindal Treasurer v Andrea Goldsmith Junior Past President v Dave Forney Senior Past President v Governors Until End of Alexander Barg 2010 v Dan Costello 2010 v Michelle Effros 2010 v Amin Shokrollahi 2010 v Ken Zeger 2010 v Helmut B¨olcskei 2011 v Abbas El Gamal 2011 v Alex Grant 2011 v Gerhard Kramer 2011 v Paul Siegel 2011 v Emina Soljanin 2011 v Sergio Verd´u 2011 v Martin Bossert 2012 v Max Costa 2012 v Rolf Johannesson 2012 v Ping Li 2012 v Hans-Andrea Loeliger 2012 v Prakash Narayan 2012 v Other Voting Members of BoG Ezio Biglieri IT Transactions Editor-in-Chief v Bruce Hajek Chair, Conference Committee v total number of voting members: 27 quorum: 14 1 Standing Committees Awards Giuseppe Caire Chair, ex officio 1st VP Muriel M´edard ex officio 2nd VP Alexander Barg new Max Costa new Elza Erkip new Ping Li new Andi Loeliger new Ueli Maurer continuing En-hui Yang continuing Hirosuke Yamamoto new Ram Zamir continuing Aaron D. Wyner Award Selection Frank Kschischang Chair, ex officio President Giuseppe Caire ex officio 1st VP Andrea Goldsmith ex officio Junior PP Dick Blahut new Jack Wolf new Claude E. Shannon Award Selection Frank Kschischang Chair, ex officio President Giuseppe Caire ex officio 1st VP Muriel M´edard ex officio 2nd VP Imre Csisz`ar continuing Bob Gray continuing Abbas El Gamal new Bob Gallager new Conference Bruce Hajek Chair Nihar Jindal ex officio Treasurer Frank Kschischang ex officio President Giuseppe Caire ex officio 1st VP Dan Costello Tony Ephremides Alex Grant Joao Barros Constitution and Bylaws Dave Forney Chair, ex officio Senior PP Andrea Goldsmith ex officio Junior PP 2 Fellows Until End of Frans Willems (chair) 2010 Michael Honig 2010 Hideki Imai 2011 Marcelo Weinberger 2011 Michelle Effros 2012 Rolf Johannesson 2012 Membership and Chapters Muriel M´edard Chair, ex officio 2nd VP Sae-Young Chung continuing Max Costa new Michelle Effros new Uri Erez continuing Stephen Hanly continuing Gerhard Kramer continuing Amin Shokrollahi new R¨udigerUrbanke continuing Han Vinck continuing Raymond Yeung new Lizhong Zheng new Nominations and Appointments Dave Forney Chair, ex officio Senior PP Andrea Goldsmith ex officio Junior PP Dan Costello 2012 James Massey 2011 Prakash Narayan 2010 Online Nick Laneman Chair Frank Kschischang ex officio President Giuseppe Caire ex officio 1st VP Aria Nosratinia ex officio Secretary Tracey Ho ex office Newsletter Editor Matthieu Bloch Jean-Francois Chamberland Amin Mobasher Stefan Moser Mehul Motani Anand Sarwate Aadrian van Wijngaarden 3 Outreach Todd Coleman Chair and Mentoring Program Coordinator Muriel M´edard ex officio 2nd VP Christina Fragouli Withits Coordinator Student Aylin Yener Chair Muriel M´edard ex officio 2nd VP Salim El Rouayheb Student Co-chair I Bobak Nazer Student Co-chair II Rui A. Costa Publications Ezio Biglieri Chair, Editor-in-Chief Tracey Ho Newsletter Editor Predrag Spasojevic Publications Editor Urbashi Mitra Assoc. Editor At Large John B. Anderson Book Reviews Uri Erez Coding Techniques Emmanuele Viterbo Coding Techniques Mario Blaum Coding Theory B. Sundar Rajan Coding Theory Igal Sason Coding Theory Aria Nosratinia Communication Networks Sennur Ulukus Communication Networks Adriaan J. van Wijngaarden Communications Giorgio Taricco Communications Lizhong Zheng Communications Toru Fujiwara Complexity and Cryptography Keith Martin Complexity and Cryptography Reihaneh Safavi-Naini Complexity and Cryptography Helmut B¨olcskei Detection and Estimation Franz Hlawatsch Detection and Estimation Adam Krzyzak Pattern Recognition, Statistical Learning, and Inference Patrick Hayden Quantum Information Theory Matthew G. Parker Sequences Nam Yul Yu Sequences Elza Erkip Shannon Theory Michael Gastpar Shannon Theory Ioannis Kontoyiannis Shannon Theory Hirosuke Yamamoto Shannon Theory Justin Romberg Signal Processing Erik Ordentlich Source Coding En-hui Yang Source Coding 4 Extrasocietal Representatives Andrea Goldsmith ComSoc Liaison John B. Anderson IEEE Press Christina Fragouli Women in Engineering Coordinator Distinguished Lecturers until Michael Gastpar 2011 Andrea Goldsmith 2011 Alon Orlitzky 2011 Amin Shokrollahi 2011 Sergio Verd´u 2011 Division Directors Alfred O. Hero Director, Division IX position vacant Director-Elect, Division IX 5.
Recommended publications
  • Group Testing
    Group Testing Amit Kumar Sinhababu∗ and Vikraman Choudhuryy Department of Computer Science and Engineering, Indian Institute of Technology Kanpur April 21, 2013 1 Motivation Out original motivation in this project was to study \coding theory in data streaming", which has two aspects. • Applications of theory correcting codes to efficiently solve problems in the model of data streaming. • Solving coding theory problems in the model of data streaming. For ex- ample, \Can one recognize a Reed-Solomon codeword in one-pass using only poly-log space?" [1] As we started, we were directed to a related combinatorial problem, \Group testing", which is important on its own, having connections with \Compressed Sensing", \Data Streaming", \Coding Theory", \Expanders", \Derandomiza- tion". This project report surveys some of these interesting connections. 2 Group Testing The group testing problem is to identify the set of \positives" (\defectives", or \infected", or 1) from a large set of population/items, using as few tests as possible. ∗[email protected] [email protected] 1 2.1 Definition There is an unknown stream x 2 f0; 1gn with at most d ones in it. We are allowed to test any subset S of the indices. The answer to the test tells whether xi = 0 for all i 2 S, or not (at least one xi = 1). The objective is to design as few tests as possible (t tests) such that x can be identified as fast as possible. Group testing strategies can be either adaptive or non-adaptive. A group testing algorithm is non-adaptive if all tests must be specified without knowing the outcome of other tests.
    [Show full text]
  • DRASIC Distributed Recurrent Autoencoder for Scalable
    DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression Enmao Diao∗, Jie Dingy, and Vahid Tarokh∗ ∗Duke University yUniversity of Minnesota-Twin Cities Durham, NC, 27701, USA Minneapolis, MN 55455, USA [email protected] [email protected] [email protected] Abstract We propose a new architecture for distributed image compression from a group of distributed data sources. The work is motivated by practical needs of data-driven codec design, low power con- sumption, robustness, and data privacy. The proposed architecture, which we refer to as Distributed Recurrent Autoencoder for Scalable Image Compression (DRASIC), is able to train distributed encoders and one joint decoder on correlated data sources. Its compression capability is much bet- ter than the method of training codecs separately. Meanwhile, the performance of our distributed system with 10 distributed sources is only within 2 dB peak signal-to-noise ratio (PSNR) of the performance of a single codec trained with all data sources. We experiment distributed sources with different correlations and show how our data-driven methodology well matches the Slepian- Wolf Theorem in Distributed Source Coding (DSC). To the best of our knowledge, this is the first data-driven DSC framework for general distributed code design with deep learning. 1 Introduction It has been shown by a variety of previous works that deep neural networks (DNN) can achieve comparable results as classical image compression techniques [1–9]. Most of these methods are based on autoencoder networks and quantization of bottleneck representa- tions. These models usually rely on entropy codec to further compress codes. Moreover, to achieve different compression rates it is unavoidable to train multiple models with different regularization parameters separately, which is often computationally intensive.
    [Show full text]
  • James Massey Memorial Service
    On June 16, 2013, JaImens L. MRassey, peassmed aweaym at hibs hormea in Cnopcenheagen, Denmark. In recognition of Jim’s great service to and love for Notre Dame, the College of Engineering invites you to join us in honoring him. A memorial Mass will be held on Friday, November 1, at 4:00 p.m. in the Holy Cross Chapel of the Stinson-Remick Hall of Engineering. It will be followed by a reception in the Stinson-Remick atrium. The Mass will be celebrated by the Rev. Edward A. Malloy, C.S.C. , President Emeritus of the University of Notre Dame, and concelebrated by the Rev. Theodore M. Hesburgh , President Emeritus of the University of Notre Dame. All are invited to attend this special event in Jim's honor. So that we can properly plan for the reception, please RSVP to Michele Tharp at [email protected] by Friday, October 4, if you plan to attend. The College of Engineering is also launching a graduate fellowship in electrical engineering in Jim’s name. Tax deductible contributions can be made here and designated for the “James L. Massey Graduate Fellowship in Electrical Engineering.” Questions regarding the fund Department of Electrical Engineering can be directed to Nathan Utz, academic advancement director for , - the College of Engineering, [email protected] . We hope you will Department of Electrical Engineering consider making a generous contribution to this worthy cause. Finally, if you know of other individuals at Notre Dame, in the South Bend area, or in the wider community who knew Jim and The Frank M.
    [Show full text]
  • Vector Quantization and Signal Compression the Kluwer International Series in Engineering and Computer Science
    VECTOR QUANTIZATION AND SIGNAL COMPRESSION THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE COMMUNICATIONS AND INFORMATION THEORY Consulting Editor: Robert Gallager Other books in the series: Digital Communication. Edward A. Lee, David G. Messerschmitt ISBN: 0-89838-274-2 An Introduction to Cryptolog)'. Henk c.A. van Tilborg ISBN: 0-89838-271-8 Finite Fields for Computer Scientists and Engineers. Robert J. McEliece ISBN: 0-89838-191-6 An Introduction to Error Correcting Codes With Applications. Scott A. Vanstone and Paul C. van Oorschot ISBN: 0-7923-9017-2 Source Coding Theory.. Robert M. Gray ISBN: 0-7923-9048-2 Switching and TraffIC Theory for Integrated BroadbandNetworks. Joseph Y. Hui ISBN: 0-7923-9061-X Advances in Speech Coding, Bishnu Atal, Vladimir Cuperman and Allen Gersho ISBN: 0-7923-9091-1 Coding: An Algorithmic Approach, John B. Anderson and Seshadri Mohan ISBN: 0-7923-9210-8 Third Generation Wireless Information Networks, edited by Sanjiv Nanda and David J. Goodman ISBN: 0-7923-9128-3 VECTOR QUANTIZATION AND SIGNAL COMPRESSION by Allen Gersho University of California, Santa Barbara Robert M. Gray Stanford University ..... SPRINGER SCIENCE+BUSINESS" MEDIA, LLC Library of Congress Cataloging-in-Publication Data Gersho, A1len. Vector quantization and signal compression / by Allen Gersho, Robert M. Gray. p. cm. -- (K1uwer international series in engineering and computer science ; SECS 159) Includes bibliographical references and index. ISBN 978-1-4613-6612-6 ISBN 978-1-4615-3626-0 (eBook) DOI 10.1007/978-1-4615-3626-0 1. Signal processing--Digital techniques. 2. Data compression (Telecommunication) 3. Coding theory. 1. Gray, Robert M., 1943- .
    [Show full text]
  • Nested Tailbiting Convolutional Codes for Secrecy, Privacy, and Storage
    Nested Tailbiting Convolutional Codes for Secrecy, Privacy, and Storage Thomas Jerkovits Onur Günlü Vladimir Sidorenko [email protected] [email protected] Gerhard Kramer German Aerospace Center TU Berlin [email protected] Weçling, Germany Berlin, Germany [email protected] TU Munich Munich, Germany ABSTRACT them as physical “one-way functions” that are easy to compute and A key agreement problem is considered that has a biometric or difficult to invert [33]. physical identifier, a terminal for key enrollment, and a terminal There are several security, privacy, storage, and complexity con- for reconstruction. A nested convolutional code design is proposed straints that a PUF-based key agreement method should fulfill. First, that performs vector quantization during enrollment and error the method should not leak information about the secret key (neg- control during reconstruction. Physical identifiers with small bit ligible secrecy leakage). Second, the method should leak as little error probability illustrate the gains of the design. One variant of information about the identifier (minimum privacy leakage). The the nested convolutional codes improves on the best known key privacy leakage constraint can be considered as an upper bound vs. storage rate ratio but it has high complexity. A second variant on the secrecy leakage via the public information of the first en- with lower complexity performs similar to nested polar codes. The rollment of a PUF about the secret key generated by the second results suggest that the choice of code for key agreement with enrollment of the same PUF [12]. Third, one should limit the stor- identifiers depends primarily on the complexity constraint.
    [Show full text]
  • MASTER of ADVANCED STUDY New Professional Degrees for Engineers University of California, San Diego of California, University
    pulse cover12_Layout 1 6/22/11 3:46 PM Page 1 Entrepreneurism Center • Research Expo 2011 In Memory of Jack Wolf Jacobs School of Engineering News PulseSummer 2011 MASTER OF ADVANCED STUDY New Professional Degrees for Engineers University of California, San Diego of California, University > dean’s column < New Interdisciplinary Degree Programs for Engineering Professionals Jacobs School of Engineering The most exciting and innovative engineering often occurs on the interface between traditional disciplines. We are extending our interdisciplinary Leadership Dean: Frieder Seible collaborations — which have always been at the core of the Jacobs School culture Associate Dean: Jeanne Ferrante — to new graduate education programs for engineering professionals. Associate Dean: Charles Tu Associate Dean for Administration and Finance: Beginning this fall, the Jacobs School will offer four new interdisciplinary Steve Ross Master of Advanced Study (MAS) programs for working engineers: Wireless Executive Director of External Relations: Embedded Systems, Medical Device Engineering, Structural Health Monitoring, Denine Hagen and Simulation-Based Engineering. Academic Departments Bioengineering: Shankar Subramanian, Chair TThese master degree programs are engineering equivalents of MBA programs Computer Science and Engineering: at business management schools. Geared to early- to mid-career engineers Rajesh Gupta, Chair Electrical and Computer Engineering: with practical work experience, our new MAS programs align faculty research Yeshaiahu Fainman, Chair strengths with industry workforce needs. The curricula are always jointly offered Mechanical and Aerospace Engineering: by two academic departments, so that the training focuses in a practical way on Sutanu Sarkar, Chair NanoEngineering: industry-specific application areas that are not available through traditional master Kenneth Vecchio, Chair degree programs.
    [Show full text]
  • Andrew Viterbi
    Andrew Viterbi Interview conducted by Joel West, PhD December 15, 2006 Interview conducted by Joel West, PhD on December 15, 2006 Andrew Viterbi Dr. Andrew J. Viterbi, Ph.D. serves as President of the Viterbi Group LLC and Co- founded it in 2000. Dr. Viterbi co-founded Continuous Computing Corp. and served as its Chief Technology Officer from July 1985 to July 1996. From July 1983 to April 1985, he served as the Senior Vice President and Chief Scientist of M/A-COM Inc. In July 1985, he co-founded QUALCOMM Inc., where Dr. Viterbi served as the Vice Chairman until 2000 and as the Chief Technical Officer until 1996. Under his leadership, QUALCOMM received international recognition for innovative technology in the areas of digital wireless communication systems and products based on Code Division Multiple Access (CDMA) technologies. From October 1968 to April 1985, he held various Executive positions at LINKABIT (M/A-COM LINKABIT after August 1980) and served as the President of the M/A-COM LINKABIT. In 1968, Dr. Viterbi Co-founded LINKABIT Corp., where he served as an Executive Vice President and later as the President in the early 1980's. Dr. Viterbi served as an Advisor at Avalon Ventures. He served as the Vice-Chairman of Continuous Computing Corp. since July 1985. During most of his period of service with LINKABIT, Dr. Viterbi served as the Vice-Chairman and a Director. He has been a Director of Link_A_Media Devices Corporation since August 2010. He serves as a Director of Continuous Computing Corp., Motorola Mobility Holdings, Inc., QUALCOMM Flarion Technologies, Inc., The International Engineering Consortium and Samsung Semiconductor Israel R&D Center Ltd.
    [Show full text]
  • Information Theory and Statistics: a Tutorial
    Foundations and Trends™ in Communications and Information Theory Volume 1 Issue 4, 2004 Editorial Board Editor-in-Chief: Sergio Verdú Department of Electrical Engineering Princeton University Princeton, New Jersey 08544, USA [email protected] Editors Venkat Anantharam (Berkeley) Amos Lapidoth (ETH Zurich) Ezio Biglieri (Torino) Bob McEliece (Caltech) Giuseppe Caire (Eurecom) Neri Merhav (Technion) Roger Cheng (Hong Kong) David Neuhoff (Michigan) K.C. Chen (Taipei) Alon Orlitsky (San Diego) Daniel Costello (NotreDame) Vincent Poor (Princeton) Thomas Cover (Stanford) Kannan Ramchandran (Berkeley) Anthony Ephremides (Maryland) Bixio Rimoldi (EPFL) Andrea Goldsmith (Stanford) Shlomo Shamai (Technion) Dave Forney (MIT) Amin Shokrollahi (EPFL) Georgios Giannakis (Minnesota) Gadiel Seroussi (HP-Palo Alto) Joachim Hagenauer (Munich) Wojciech Szpankowski (Purdue) Te Sun Han (Tokyo) Vahid Tarokh (Harvard) Babak Hassibi (Caltech) David Tse (Berkeley) Michael Honig (Northwestern) Ruediger Urbanke (EPFL) Johannes Huber (Erlangen) Steve Wicker (GeorgiaTech) Hideki Imai (Tokyo) Raymond Yeung (Hong Kong) Rodney Kennedy (Canberra) Bin Yu (Berkeley) Sanjeev Kulkarni (Princeton) Editorial Scope Foundations and Trends™ in Communications and Information Theory will publish survey and tutorial articles in the following topics: • Coded modulation • Multiuser detection • Coding theory and practice • Multiuser information theory • Communication complexity • Optical communication channels • Communication system design • Pattern recognition and learning • Cryptology
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 63, No. 3, September 2013 Editor: Tara Javidi ISSN 1059-2362 Editorial committee: Ioannis Kontoyiannis, Giuseppe Caire, Meir Feder, Tracey Ho, Joerg Kliewer, Anand Sarwate, Andy Singer, and Sergio Verdú Annual Awards Announced The main annual awards of the • 2013 IEEE Jack Keil Wolf ISIT IEEE Information Theory Society Student Paper Awards were were announced at the 2013 ISIT selected and announced at in Istanbul this summer. the banquet of the Istanbul • The 2014 Claude E. Shannon Symposium. The winners were Award goes to János Körner. the following: He will give the Shannon Lecture at the 2014 ISIT in 1) Mohammad H. Yassaee, for Hawaii. the paper “A Technique for Deriving One-Shot Achiev - • The 2013 Claude E. Shannon ability Results in Network Award was given to Katalin János Körner Daniel Costello Information Theory”, co- Marton in Istanbul. Katalin authored with Mohammad presented her Shannon R. Aref and Amin A. Gohari Lecture on the Wednesday of the Symposium. If you wish to see her slides again or were unable to attend, a copy of 2) Mansoor I. Yousefi, for the paper “Integrable the slides have been posted on our Society website. Communication Channels and the Nonlinear Fourier Transform”, co-authored with Frank. R. Kschischang • The 2013 Aaron D. Wyner Distinguished Service Award goes to Daniel J. Costello. • Several members of our community became IEEE Fellows or received IEEE Medals, please see our web- • The 2013 IT Society Paper Award was given to Shrinivas site for more information: www.itsoc.org/honors Kudekar, Tom Richardson, and Rüdiger Urbanke for their paper “Threshold Saturation via Spatial Coupling: The Claude E.
    [Show full text]
  • Reed-Solomon Encoding and Decoding
    Bachelor's Thesis Degree Programme in Information Technology 2011 León van de Pavert REED-SOLOMON ENCODING AND DECODING A Visual Representation i Bachelor's Thesis | Abstract Turku University of Applied Sciences Degree Programme in Information Technology Spring 2011 | 37 pages Instructor: Hazem Al-Bermanei León van de Pavert REED-SOLOMON ENCODING AND DECODING The capacity of a binary channel is increased by adding extra bits to this data. This improves the quality of digital data. The process of adding redundant bits is known as channel encod- ing. In many situations, errors are not distributed at random but occur in bursts. For example, scratches, dust or fingerprints on a compact disc (CD) introduce errors on neighbouring data bits. Cross-interleaved Reed-Solomon codes (CIRC) are particularly well-suited for detection and correction of burst errors and erasures. Interleaving redistributes the data over many blocks of code. The double encoding has the first code declaring erasures. The second code corrects them. The purpose of this thesis is to present Reed-Solomon error correction codes in relation to burst errors. In particular, this thesis visualises the mechanism of cross-interleaving and its ability to allow for detection and correction of burst errors. KEYWORDS: Coding theory, Reed-Solomon code, burst errors, cross-interleaving, compact disc ii ACKNOWLEDGEMENTS It is a pleasure to thank those who supported me making this thesis possible. I am thankful to my supervisor, Hazem Al-Bermanei, whose intricate know- ledge of coding theory inspired me, and whose lectures, encouragement, and support enabled me to develop an understanding of this subject.
    [Show full text]
  • Reflections on Compressed Sensing, by E
    itNL1208.qxd 11/26/08 9:09 AM Page 1 IEEE Information Theory Society Newsletter Vol. 58, No. 4, December 2008 Editor: Daniela Tuninetti ISSN 1059-2362 Source Coding and Simulation XXIX Shannon Lecture, presented at the 2008 IEEE International Symposium on Information Theory, Toronto Canada Robert M. Gray Prologue Source coding/compression/quantization A unique aspect of the Shannon Lecture is the daunting fact that the lecturer has a year to prepare for (obsess over?) a single lec- source reproduction ture. The experience begins with the comfort of a seemingly infi- { } - bits- - Xn encoder decoder {Xˆn} nite time horizon and ends with a relativity-like speedup of time as the date approaches. I early on adopted a few guidelines: I had (1) a great excuse to review my more than four decades of Simulation/synthesis/fake process information theoretic activity and historical threads extending simulation even further back, (2) a strong desire to avoid repeating the top- - - ics and content I had worn thin during 2006–07 as an interconti- random bits coder {X˜n} nental itinerant lecturer for the Signal Processing Society, (3) an equally strong desire to revive some of my favorite topics from the mid 1970s—my most active and focused period doing Figure 1: Source coding and simulation. unadulterated information theory, and (4) a strong wish to add something new taking advantage of hindsight and experience, The goal of source coding [1] is to communicate or transmit preferably a new twist on some old ideas that had not been pre- the source through a constrained, discrete, noiseless com- viously fully exploited.
    [Show full text]
  • “USC Engineering and I Grew up Together,” Viterbi Likes to Say
    Published by the University of Southern California Volume 2 Issue 2 Let There Be Light A Revolution in BioMed Imaging Small and Deadly A Proper Name Searching for Air A Proper Name Pollution Solutions Viterbis Name School of Engineering Digital Reunion Reuniting the Parthenon and its Art Spring/Summer 2004 One man’s algorithm changed the way the world communicates. One couple’s generosity has the potential to do even more. Andrew J. Viterbi: Presenting The University of Southern California’s • Inventor of the Viterbi Algorithm, the basis of Andrew and Erna Viterbi School of Engineering. all of today’s cell phone communications • The co-founder of Qualcomm • Co-developer of CDMA cell phone technology More than 40 years ago, we believed in Andrew Viterbi and granted him a Ph.D. • Member of the National Academy of Engineering, the National Academy of Sciences and the Today, he clearly believes in us. He and his wife of nearly 45 years have offered American Academy of Arts and Sciences • Recipient of the Shannon Award, the Marconi Foundation Award, the Christopher Columbus us their name and the largest naming gift for any school of engineering in the country. With the Award and the IEEE Alexander Graham Bell Medal • USC Engineering Alumnus, Ph.D., 1962 invention of the Viterbi Algorithm, Andrew J. Viterbi made it possible for hundreds of millions of The USC Viterbi School of Engineering: • Ranked #8 in the country (#4 among private cell phone users to communicate simultaneously, without interference. With this generous gift, he universities) by U.S. News & World Report • Faculty includes 23 members of the National further elevates the status of this proud institution, known from this day forward as USC‘s Andrew Academy of Engineering, three winners of the Shannon Award and one co-winner of the 2003 Turing Award and Erna Viterbi School of Engineering.
    [Show full text]