Stand and Deliver AP Calculus AB
Total Page:16
File Type:pdf, Size:1020Kb
Stand and Deliver – AP Calculus AB sin 2x 2sin xcos x 1 cos 2x= cos2 x - sin 2 x cos 2x= 2cos2 x - 1 2 cos 2x= 1 - 2sin2 x 1 cos2x sin 2 x 3 2 1 cos2x cos2 x 4 2 sin 2 x cos2 x 1 1 tan 2 x sec2 x 5 1 cot 2 x csc2 x
Point-Slope Form : y y1 m(x x1 ) 6 Distance Formula: 2 2 d (x2 x1 ) (y2 y1 ) 7 Existence of a Limit: 8 lim f (x) L AND xc lim f (x) L xc sin(x) lim 1 9 x0 x 1 cos(x) lim 0 10 x0 x Definition of Continuity: 11 f is continuous a,b if it is continuous on a,b and lim f (x) f (a) xa and lim f (x) f (b) xb Angle sin cos tan 12 0 0 1 0 1 3 3 6 2 2 3 2 2 1 4 2 2 3 1 3 3 2 2 1 0 2 Definition of a Derivative: 13 f (x x) f (x) f (x) lim x0 x d Power Rule: (x n ) nx n1 dx 14 Average Velocity = 15 final position- initial position changein time Product Rule 16 d (f ( x ) g ( x ))= f ( x ) g '( x ) + g ( x ) f '( x ) dx Quotient Rule 17 d骣 f( x ) g ( x ) f '( x )- f ( x ) g '( x ) 琪 = dx桫 g( x ) ( g ( x ))2 “lo d hi – hi d lo” d sin x cos x dx 18 d cos x sin x dx 19 d tan x sec2 x dx 20 d cot x csc2 x dx 21 d sec x sec x tan x dx 22 d csc x csc xcot x 23 dx f (x) = position 24 f (x) = velocity f (x) = acceleration Chain Rule “Skin and Guts” 25 d f (g(x)) f (g(x)) * g(x) dx “d of skin w/ guts intact times d of guts” Volume of a Cube 26 V e3 Volume of a Cone 27 r 2 V 3
Volume of a Sphere 28 4 V r 3 3 Critical Values: 29 set f( x )= 0 and f’(x) = undefined Mean Value Theorem for Derivatives: 30 If f (x) is continuous from [a,b] and differential from (a,b) then there exists at least one c where f (b) f (a) f (c) . b a If the sign of f (x) changes from + to – 31 then a maximum occurs at (x, f(x)) If the sign of f (x) changes from – to + 32 then a minimum occurs at (x, f(x)) Concavity: 33 If f ’’(x) > 0 (positive): concave up If f ’’(x) < 0 (negative): concave down A point of inflection occurs when 34 1) f (x) is 0 AND 2) the sign of f (x) changes at that point Second Derivative Test 35 1. If f ‘’ (x) > 0, there is a minimum at (c, f(c)) 2. If f ‘’ (x) < 0, there is a maximum at (c, f(c)) 3. If f ’’ (x) = 0, test fails, use f ‘ (x) x n1 x n dx c ; n 1 36 n 1 sin x dx cos x c 37 cos x dx sin x c 38 2 sec x dx tan x c 39 2 csc x dx cot x c 40 sec x tan x dx sec x c 41 csc x cot x dx csc x c 42 Fundamental Theorem of Calculus – Part I 43 b f (x)dx F(b) F(a) a
Mean Value Theorem for Integrals 44 b zf (x)dx f (c)(b a) a Average Value Theorem for Integrals: 45 1 a f (c) f (x)dx b a b Fundamental Theorem of Calculus – Part II 46 x dx f (t)dt f (x) a Trapezoidal Rule: 47 b a f (x ) 2 f (x ) ... 2 f (x ) f (x ) 2n 0 1 n1 n d 1 d u' ln x lnu 48 dx x dx u 1 dx ln x c 49 x tan x dx ln cos x c 50 cot x dx ln sin x c 51 sec x dx ln sec x tan x c 52 csc x dx ln csc x cot x c 53 d e x e x dx 54 e x dx e x c 55 d a x a x lna 56 dx d 1 log x 57 dx b xlnb a x a x dx c ln a 58
d-1 u ' sin u = 59 dx 1- u 2
d-1 - u ' cos u = dx 1- u2 60 d u ' tan-1 u = dx1+ u2 61 d- u ' cot-1 u = 62 dx1+ u2
d-1 u ' sec u = 63 dx u u2 -1
d-1 - u ' csc u = 64 dx u u2 -1 du u arcsin c 65 2 2 a u a du 1 u arctan c 66 a 2 u 2 a a du 1 u arc sec c 67 2 2 u u a a a Volume - Disk Method: 68 a V (OR 2 IR 2 )dx b Volume - By Known Cross-Section: 69 a V Area(x) dx b b 2 Arclength = 1 ( f (x)) dx 70 a Law of Growth/Decay: y Ce kt