Stand and Deliver AP Calculus AB

Stand and Deliver AP Calculus AB

<p> Stand and Deliver – AP Calculus AB sin 2x  2sin xcos x 1 cos 2x= cos2 x - sin 2 x cos 2x= 2cos2 x - 1 2 cos 2x= 1 - 2sin2 x 1 cos2x sin 2 x  3 2 1 cos2x cos2 x  4 2 sin 2 x  cos2 x 1 1 tan 2 x  sec2 x 5 1 cot 2 x  csc2 x</p><p>Point-Slope Form : y  y1  m(x  x1 ) 6 Distance Formula: 2 2 d  (x2  x1 )  (y2  y1 ) 7 Existence of a Limit: 8 lim f (x)  L AND xc lim f (x)  L xc sin(x) lim 1 9 x0 x 1 cos(x) lim  0 10 x0 x Definition of Continuity: 11 f is continuous a,b if it is continuous on a,b and lim f (x)  f (a) xa and lim f (x)  f (b) xb Angle sin cos tan 12 0 0 1 0  1 3 3 6 2 2 3  2 2 1 4 2 2  3 1 3 3 2 2  1 0 2  Definition of a Derivative: 13 f (x  x)  f (x) f (x)  lim x0 x d Power Rule: (x n )  nx n1 dx 14 Average Velocity = 15 final position- initial position changein time Product Rule 16 d (f ( x ) g ( x ))= f ( x ) g '( x ) + g ( x ) f '( x ) dx Quotient Rule 17 d骣 f( x ) g ( x ) f '( x )- f ( x ) g '( x ) 琪 = dx桫 g( x ) ( g ( x ))2 “lo d hi – hi d lo” d sin x  cos x dx 18 d cos x  sin x dx 19 d tan x  sec2 x dx 20 d cot x  csc2 x dx 21 d sec x  sec x tan x dx 22 d csc x  csc xcot x 23 dx f (x) = position 24 f (x) = velocity f (x) = acceleration Chain Rule “Skin and Guts” 25 d  f (g(x))  f (g(x)) * g(x) dx “d of skin w/ guts intact times d of guts” Volume of a Cube 26 V  e3 Volume of a Cone 27 r 2 V  3</p><p>Volume of a Sphere 28 4 V  r 3 3 Critical Values: 29 set f( x )= 0 and f’(x) = undefined Mean Value Theorem for Derivatives: 30 If f (x) is continuous from [a,b] and differential from (a,b) then there exists at least one c where f (b)  f (a) f (c)  . b  a If the sign of f (x) changes from + to – 31 then a maximum occurs at (x, f(x)) If the sign of f (x) changes from – to + 32 then a minimum occurs at (x, f(x)) Concavity: 33 If f ’’(x) > 0 (positive): concave up If f ’’(x) < 0 (negative): concave down A point of inflection occurs when 34 1) f (x) is 0 AND 2) the sign of f (x) changes at that point Second Derivative Test 35 1. If f ‘’ (x) > 0, there is a minimum at (c, f(c)) 2. If f ‘’ (x) < 0, there is a maximum at (c, f(c)) 3. If f ’’ (x) = 0, test fails, use f ‘ (x) x n1 x n dx   c ; n 1 36  n  1 sin x dx  cos x  c 37 cos x dx  sin x  c 38 2  sec x dx  tan x  c 39 2  csc x dx  cot x  c 40  sec x tan x dx  sec x  c 41  csc x cot x dx   csc x  c 42 Fundamental Theorem of Calculus – Part I 43 b f (x)dx  F(b)  F(a) a</p><p>Mean Value Theorem for Integrals 44 b zf (x)dx  f (c)(b  a) a Average Value Theorem for Integrals: 45 1 a f (c)  f (x)dx b  a b Fundamental Theorem of Calculus – Part II 46 x dx f (t)dt  f (x) a Trapezoidal Rule: 47 b  a  f (x )  2 f (x )  ...  2 f (x )  f (x ) 2n 0 1 n1 n d 1 d u' ln x  lnu  48 dx x dx u 1 dx  ln x  c 49  x  tan x dx  ln cos x  c 50  cot x dx  ln sin x  c 51  sec x dx  ln sec x  tan x  c 52  csc x dx   ln csc x  cot x  c 53 d e x  e x dx 54 e x dx  e x  c 55 d a x  a x lna 56 dx d 1 log x  57 dx b xlnb a x a x dx   c  ln a 58</p><p> d-1 u ' sin u = 59 dx 1- u 2</p><p> d-1 - u ' cos u = dx 1- u2 60 d u ' tan-1 u = dx1+ u2 61 d- u ' cot-1 u = 62 dx1+ u2</p><p> d-1 u ' sec u = 63 dx u u2 -1</p><p> d-1 - u ' csc u = 64 dx u u2 -1 du u  arcsin  c 65  2 2 a  u a du 1 u  arctan  c 66  a 2  u 2 a a du 1 u  arc sec  c 67  2 2 u u  a a a Volume - Disk Method: 68 a V  (OR 2  IR 2 )dx b Volume - By Known Cross-Section: 69 a V  Area(x) dx b b 2 Arclength = 1 ( f (x)) dx 70 a Law of Growth/Decay: y  Ce kt</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us