Male Reproductive System First Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Male Reproductive System First Lecture Male Reproductive system First lecture Dr. Ahmed Nazar Abduljawad The male reproductive system consists of (a) the testes surrounded by the tunica vaginalis and the testicular tunics, (b) the epididymides, (c) the ductus deferens, (d) the accessory glands (glandular portion of the ductus deferens, vesicular and bulbourethral glands, prostate), (e) the urethra, and (f) the penis surrounded by the prepuce. Testis: paired ovoid organs, serve both exocrine (sperm production) and endocrine (testosterone production) functions, suspended in the scrotum. *Scrotum: skin pouch contains sweat and sebaceous gland , scrotum maintains the testes at a temperature about 2 to3 Cº below body temperature. Tunica dartos is a special layer of smooth muscle within the scrotum, it's arranged randomly, these muscle fibers play an important role in the regulation of testicular temperature. *Capsule of testis consist of three tunics: 1.Tunica vaginalis: consists of mesothelium and a connective tissue layer that blends with underlying connective tissue of the scrotum, tunica vaginalis consist of visceral layer and parietal layer, When the testis is removed from the scrotum, the parietal layer of the tunica vaginalis remains attached to the inner surface of the scrotum, while the visceral layer, remains associated with the (tunica albuginea) of the testis. 2. Tunica Albuginea: Is a solid capsule of dense irregular connective tissue. It consists of collagen fibers, a few elastic fibers, the tunica albuginea is continuous with connective-tissue trabeculae to formed the testis trabeculae or called septula testis. The septula testis divide the testicular parenchyma into a varying number of testicular lobules, each lobule containing one to four convoluted seminiferous tubules. The septula testis converges posteriorly in equine and Centrally in canine and ruminants to form the mediastinum testis. The mediastinum testis which is actually a thickened portion of the tunica albuginea, contains the rete testis. Tunica vasculosa: it's constitute by branches of the testicular artery and a network of anastomosing veins. Interstitial Endocrine cells (Leydig cells): It's present as clusters located between the intertubular spaces of the testis. These cells are polyhedral and has spherical Euchromatic nucleus. Possessing Eosinophilic cytoplasm filled with smooth endoplasmic reticulum and mitochondria .Leydig cells produce testicular androgens (testosterone) under the influence of luteinizing hormone (LH). Among the main functions of testosterone are: - promotion of normal sexual behavior (libido). -Responsible for the appearance of secondary sexual characteristics. -control of spermatogenesis (together with follicle-stimulating hormone [FSH]). -the prenatal maintenance of the wolffian duct and its differentiation into the epididymis and ductus deferens. Seminiferous tubule Seminiferous tubules: The convoluted seminiferous tubules in most mammals are tortuous with a diameter between 150 and 300 µm. They are lined by the stratified spermatogenic epithelium (germinal epithelium), surrounded by a lamina propria. The length of all seminiferous tubules in the testis of the adult bovine amounts to approximately 5000m. Histologically , the seminiferous tubules have three components:1 lamina propria, 2 sustentacular cells (Sertoli cells), and 3 spermatogenic cells. Sustentacular cell (Sertoli cell): The adult sertoli cells are irregularly outlined because it’s surrounded by spermatocytes set in pockets-like shape. - Sertoli cells are elongated cells, Their broad base rests on the basement membrane, while their apex extend upward to the tubular lumen. - It have oval or triangular nucleus is located in the basal portion of the cell, and contains a large nucleolus. -cytoplasm of Sertoli cells contain mitochondria, Golgi complex, abundant smooth ER, little rough ER, microtubules, microfilaments, and lysosomes. -approximately 20 sertoli cells are seen in a cross section of an adult seminiferous tubule. Functions of Sertoli cells:- 1. supportive, and nutritive functions for the spermatogenic cells. 2. phagocytic function of residual bodies and degenerated cells. 3. Release the spermatozoa into the lumen of the seminiferous tubules (spermiation). 4. Secretory function: a. In embryo produce antiparamesonephric hormone(anti- Müllerian hormone), a glycoprotein that inhibit development of uterine tubes, uterus, and vagina in the male. b. In post puberty secrete : 1. testicular fluid to push the newly sperms from seminiferous tubules toward the testicular ducts. 2. androgen-binding protein: that acts to increase testosterone concentration within the seminiferous.(under control of FSH) 3. inhibin: that inhibit the secretion of FSH. 5. It formed the blood-testis barrier, which protects against immunologic attack. .
Recommended publications
  • Sonography of the Scrotum
    1 Sonography of the Scrotum Chee-Wai Mak and Wen-Sheng Tzeng Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan Central Taiwan University of Science and Technology, Taichung, Taiwan Chung Hwa University of Medical Technology, Tainan, Taiwan Republic of China 1. Introduction Although the development of new imaging modality such as computerized tomography and magnetic resonance imaging have open a new era for medical imaging, high resolution sonography remains as the initial imaging modality of choice for evaluation of scrotal disease. Many of the disease processes, such as testicular torsion, epididymo-orchitis, and intratesticular tumor, produce the common symptom of pain at presentation, and differentiation of these conditions and disorders is important for determining the appropriate treatment. High resolution ultrasound helps in better characterize some of the intrascrotal lesions, and suggest a more specific diagnosis, resulting in more appropriate treatments and avoiding unnecessary operation for some of the diseases. 2. Imaging technique For any scrotal examination, thorough palpation of the scrotal contents and history taking should precede the sonographic examination. Patients are usually examined in the supine position with a towel draped over his thighs to support the scrotum. Warm gel should always be used because cold gel can elicit a cremasteric response resulting in thickening of the scrotal wall; hence a thorough examination is difficult to be performed. A high resolution, near-focused, linear array transducer with a frequency of 7.5 MHz or greater is often used because it provides increased resolutions of the scrotal contents. Images of both scrotum and bilateral inguinal regions are obtained in both transverse and longitudinal planes.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Biomechanical Aspects of Peyronie's Disease in Development Stages And
    International Journal of Impotence Research (2002) 14, 389–396 ß 2002 Nature Publishing Group All rights reserved 0955-9930/02 $25.00 www.nature.com/ijir Biomechanical aspects of Peyronie’s disease in development stages and following reconstructive surgeries A Gefen1*, D Elad1 and J Chen2 1Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; and 2Department of Urology, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel Peyronie’s disease is a disorder of the penile connective tissues that leads to development of dense fibrous or ossified plaques in the tunica albuginea, causing penile deformity and painful erection. A biomechanical model of the penis was utilized for analyzing the mechanical stresses that develop within its soft tissues during erection in the presence of Peyronie’s plaques. The model’s simulations demonstrated stress concentrations around nerve roots and blood vessels due to the plaques. These stresses may irritate nerve endings or compress the vascular bed, and thus cause penile deformity and=or painful erection. The model was further used to elaborate the effects of different biological or artificial materials for reconstruction of the penis following plaque removal. Clinical applications of the present model can range from analysis of the etiology of the disease to assisting in the determination of optimal timing for therapeutic interventions and in the selection of patch material for penile reconstructions. International Journal of Impotence Research (2002) 14, 389–396. doi:10.1038=sj.ijir.3900866 Keywords: erectile function=dysfunction; numerical model; finite element method; tissue ossification; plaque Introduction stresses and=or structural deformities.
    [Show full text]
  • Scrotal Ultrasound
    Scrotal Ultrasound Bruce R. Gilbert, MD, PhD Associate Clinical Professor of Urology & Reproductive Medicine Weill Cornell Medical College Director, Reproductive and Sexual Medicine Smith Institute For Urology North Shore LIJ Health System 1 Developmental Anatomy" Testis and Kidney Hindgut Allantois In the 3-week-old embryo the Primordial primordial germ cells in the wall of germ cells the yolk sac close to the attachment of the allantois migrate along the Heart wall of the hindgut and the dorsal Genital Ridge mesentery into the genital ridge. Yolk Sac Hindgut At 5-weeks the two excretory organs the pronephros and mesonephros systems regress Primordial Pronephric system leaving only the mesonephric duct. germ cells (regressing) Mesonephric The metanephros (adult kidney) system forms from the metanephric (regressing) diverticulum (ureteric bud) and metanephric mass of mesoderm. The ureteric bud develops as a dorsal bud of the mesonephric duct Cloaca near its insertion into the cloaca. Mesonephric Duct Mesonephric Duct Ureteric Bud Ureteric Bud Metanephric system Metanephric system 2 Developmental Anatomy" Wolffian and Mullerian DuctMesonephric Duct Under the influence of SRY, cells in the primitive sex cords differentiate into Sertoli cells forming the testis cords during week 7. Gonads Mesonephros It is at puberty that these testis cords (in Paramesonephric association with germ cells) undergo (Mullerian) Duct canalization into seminiferous tubules. Mesonephric (Wolffian) Duct At 7 weeks the indifferent embryo also has two parallel pairs of genital ducts: the Mesonephric (Wolffian) and the Paramesonephric (Mullerian) ducts. Bladder Bladder Mullerian By week 8 the developing fetal testis tubercle produces at least two hormones: Metanephros 1. A glycoprotein (MIS) produced by the Ureter Uterovaginal fetal Sertoli cells (in response to SRY) primordium Rectum which suppresses unilateral development of the Paramesonephric (Mullerian) duct 2.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Adipose Tissue-Derived Stem Cell-Seeded Small Intestinal Submucosa for Tunica Albuginea Grafting and Reconstruction
    Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction Limin Maa,b,1, Yijun Yanga,1, Suresh C. Sikkaa,c, Philip J. Kadowitzc, Louis J. Ignarrod, Asim B. Abdel-Mageeda,c,2, and Wayne J. G. Hellstroma,2,3 Departments of aUrology and cPharmacology, Tulane University Health Sciences Center, New Orleans, LA 70112; bDepartment of Urology, Ninth People’s Hospital Affiliated with Medical College of Shanghai, Jiaotong University, Shanghai 200011, China; and dDepartment of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles Center for the Health Sciences, Los Angeles, CA 90095 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 13, 2011 (received for review August 29, 2011) Porcine small intestinal submucosa (SIS) has been widely used in cell transplantation has been demonstrated in vascular (6) and car- tunica albuginea (TA) reconstructive surgery. Adipose tissue-derived tilage reconstruction (7) and in restoring immune response and stem cells (ADSCs) can repair damaged tissue, augment cellular hematopoiesis (8). In vivo scaffold-based studies further expanded differentiation, and stimulate release of multiple growth factors. the use of MSCs in new bone formation (9). The aim of this rat study was to assess the feasibility of seeding With the development of tissue engineering, cell-seeded acellu- ADSCs onto SIS grafts for TA reconstruction. Here, we demonstrate lar matrix
    [Show full text]
  • Ultrasonography of the Scrotum in Adults
    University of Massachusetts Medical School eScholarship@UMMS Radiology Publications and Presentations Radiology 2016-07-01 Ultrasonography of the scrotum in adults Anna L. Kuhn University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/radiology_pubs Part of the Male Urogenital Diseases Commons, Radiology Commons, Reproductive and Urinary Physiology Commons, Urogenital System Commons, and the Urology Commons Repository Citation Kuhn AL, Scortegagna E, Nowitzki KM, Kim YH. (2016). Ultrasonography of the scrotum in adults. Radiology Publications and Presentations. https://doi.org/10.14366/usg.15075. Retrieved from https://escholarship.umassmed.edu/radiology_pubs/173 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Radiology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Ultrasonography of the scrotum in adults Anna L. Kühn, Eduardo Scortegagna, Kristina M. Nowitzki, Young H. Kim Department of Radiology, UMass Memorial Medical Center, University of Massachusetts Medical Center, Worcester, MA, USA REVIEW ARTICLE Ultrasonography is the ideal noninvasive imaging modality for evaluation of scrotal http://dx.doi.org/10.14366/usg.15075 abnormalities. It is capable of differentiating the most important etiologies of acute scrotal pain pISSN: 2288-5919 • eISSN: 2288-5943 and swelling, including epididymitis and testicular torsion, and is the imaging modality of choice Ultrasonography 2016;35:180-197 in acute scrotal trauma. In patients presenting with palpable abnormality or scrotal swelling, ultrasonography can detect, locate, and characterize both intratesticular and extratesticular masses and other abnormalities.
    [Show full text]
  • Role of Tunica Vaginalis Interposition Layer in Hypospadias Surgery
    Published online: 2020-05-14 Free full text on www.ijps.org Original Article Role of tunica vaginalis interposition layer in hypospadias surgery Yog Raj Handoo Deendayal Upadhyay Hospital, Hari Nagar, New Delhi, India Address for correspondence: Yog Raj Handoo, 87/Samaj Kalyan Apartments, Vikaspuri, Delhi - 110 018, India. E-mail: [email protected] ABSTRACT Hypospadias surgery has evolved with more than 150 procedures for surgical correction of single anomaly .urethro-cutaneous fistula continues to be single most common complication of regardless of location of meatus, procedure performed and experience of surgeon. Every effort goes in prevention of this complication including overlapping suture line. Two stage repair, burying repaired urethra in scrotum, dartose flap. Parietal layer of tunica vaginalis from testis as a water proofing layer over reconstructed neo urethra decreasing fistula rate. Unlike dissection of dartose layer which can damage blood supply of overlying skin with impaired wound healing, tunica vaginalis brings vascular supply from outside source hence helping in healing of suture line of neo-urethra. Study of effectiveness of tunica vaginalis flap covering different hypospadias procedures in 126 cases over 6 years is presented with inference of significant decrease of urethra-cutaneous fistula rate. KEY WORDS Hypospadias, fistula, tunica vaginalis flap INTRODUCTION in scrotum,[4] dartos flap,[5] overlapping denuded subcutaneous tissue,[6] rotating skin flaps etc. Tunica ypospadias repair continues to be a singularly vaginalis flap from the parietal layer of testis cover of demanding form of surgical expression with anastomosis of urethroplasty is one more option which Hconsiderable artistic latitude.[1] Hypospadias helps in the reduction of urethro-cutaneous fistulae.
    [Show full text]
  • Brief Note Nonpigmented Tunica Vaginalis Testis in the Opossum1
    Copyright © 1979 Ohio Acad. Sci. 0030-0950/79/0002-0079$1.00/0 BRIEF NOTE NONPIGMENTED TUNICA VAGINALIS TESTIS IN THE OPOSSUM1 JANE N. SCOTT, Department of Anatomy H. IRA FRITZ, Department of Biological Chemistry, Wright State University School of Medicine, Dayton, OH 45435 OHIO J. SCI. 79(2): 79, 1979 Compared to other male mammals, the The average weight of the testes sur- American male marsupials have unusual rounded by nonpigmented tunics was reproductive systems: the scrotum is 1.23 g (1.08 g and 1.3S g) and testes sur- prepenial, the penis is bifid, and sperma- rounded by pigmented tunics had an tozoa pair as they pass through the epi- average weight of 1.31 g (1.16 g and didymis (Biggers 1966). In addition, it 1.46 g). The average weight of epi- has been reported that the tunica vagi- didymides surrounded by nonpigmented nalis testis is always pigmented due to tunics was 0.61 g (0.56 g and 0.66 g), and the presence of melanin (Ellsworth 1976). the average weight of epididymides sur- Biggers (1966) has suggested that the rounded by pigmented tunics was also pigmented tunic acts as a black-body 0.61 g (0.60 g and 0.63 g). There may radiator and helps lower testicular tem- perature, which is necessary for optimal spermatogenesis in mammals. In preliminary experiments designed to study the effect of temperature on spermatogenesis and sperm maturation in the opossum, we live-trapped 6 males and utilized 3 males raised in captivity. Examination of the pigmentation of the underlying tunica vaginalis testis was carried out superficially by noting the coloration of the tissue through the scrotal skin.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Male Reproductive Organs Testes (Paired Gonads)
    Male Reproductive Organs Testes (paired Gonads) Penis Series of passageways . Epididymis . Ductus Deferens . Urethra Accessory Glands . Seminal vesicle . Prostate Functions • Paired Gonads (Testes) – Produce Spermatozoa (male germ cells) & Androgens (male sex hormones) •Penis– Copulatory organ • Series of passageways & ducts – To store the spermatozoa , ready for delivery to male copulatory organ • Male accessory glands – provide fluid vehicle for carrying spermatozoa Coverings Tunica Vaginalis Tunica Albuginea Tunica Vasculosa Outermost Layer . Tunica Albuginea (Dense connective tissue fibrous Memb.) – Consist of closely packed collagen Fibres with a few Elastic Fibres . form septa ,Project from Mediastinum Testis . Divide incompletely into pyramidal lobules with apex towards Mediatinum . Each Testis Approx-200 lobule . Each lobule has Approx1-4 seminiferous Tubules . Form loop to end in Straight tubule (20-30) • Straight tubules end up unite to form network (Rete testis) which gives off 15-20 efferent ductules • Space between tubules filled up by Loose connective tissue (collagen fibres & fibroblasts,macrophases , mast cells), blood vessels, Lymphatics & Interstitial cells of Leydig Seminiferous Tubules • Fill most of interior of Each Testes • Two types of cells • Germ cells (represent different stages of spermatogenesis) Spermatogonia (Type A & type B) Primary spermatocyte Secondary spermatocyte Spermatids Spermatozoa • Sustantacular cells (Sertoli) Mitosis Spermatogonium 44+X 44+X Type A +Y +Y Spermatogonium 44+X+ Y Type B Enlarge/Mitosis
    [Show full text]
  • Mesothelioma of the Tunica Vaginalis Testis
    Ruiz et al. Int Arch Urol Complic 2016, 2:015 Volume 2 | Issue 1 International Archives of ISSN: 2469-5742 Urology and Complications Case Report: Open Access Mesothelioma of the Tunica Vaginalis Testis: Case Report and Review Ruiz Hernández M1*, Fabuel Alcañiz JJ1, Gutiérrez-Pecharromán AM2, Romio de las Heras E2, Rodríguez-Patrón Rodríguez R1, Varona Crespo C2, Burgos Revilla FJ1 1Department of Urology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain 2Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain *Corresponding author: Mercedes Ruiz Hernández, Department of Urology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain, E-mail: [email protected] Abstract A 93-year-old man with chronic hydrocele and no history of asbestos exposure underwent a hydrocelectomy, which revealed several nodules in the tunica vaginalis. The histopathological diagnosis was malignant mesothelioma, requiring a second procedure. A radical inguinal orchiectomy with hemiscrotectomy was performed, reporting tumor-free surgical margins; therefore, no adjuvant treatments were given. Three months postoperative, the patient continued asymptomatic, scrotal examination was normal, and control CT scan showed no evidence of lymphatic disease or metastases. Keywords Malignant mesothelioma, Tunica vaginalis, Hydrocele, Scrotal pain Introduction Malignant mesothelioma of the tunica vaginalis (MMTV) is a rare neoplasm which represents approximately 5% of mesotheliomas [1]. Its clinical presentation is unspecific (the most common is chronic hydrocele) [1], making preoperative suspicion unusual. This causes a negative impact on prognosis; for example if a hydrocelectomy is intervened via scrotum, the neoplasm lymphatic drainage is altered Figure 1: Doppler Ultrasound Imaging: a Thick tunica vaginalis with abundant and may facilitate metastases [2].
    [Show full text]