1 Introduction and Terminology

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction and Terminology A Survey of Solved Problems and Applications on Bandwidth, Edgesum and Pro le of Graphs Yung-Ling Lai National Chiayi Teacher College Chiayi, Taiwan, R.O.C. Kenneth Williams Western Michigan University Abstract This pap er provides a survey of results on the exact bandwidth, edge- sum, and pro le of graphs. A bibliographyof work in these areas is pro- vided. The emphasis is on comp osite graphs. This may be regarded as an up date of the original survey of solved bandwidth problems by Chinn, Chvatalova, Dewdney, and Gibbs[10] in 1982. Also several of the applica- tion areas involving these graph parameters are describ ed. 1 Intro duction and terminology For a graph G, V (G) denotes the set of vertices of G and E (G) denotes the set of edges of G. Let G = (V; E ) be a graph on n vertices. A 1-1 mapping f : V ! f1; 2;:::;ng is called a proper numbering of G. The bandwidth B (G) of aproper f numbering f of G is the number B (G)= maxfjf (u) f (v )j : uv 2 E g; f and the bandwidth B(G) of G is the number B (G)= minfB (G): f is a prop er numb ering of Gg: f A prop er numb ering f is called a bandwidth numbering of G if B (G)=B (G). f For example, Figure 1 shows bandwidth numb erings for the graphs P ;C ;K 4 5 1;4 and K . In general, B (P ) = 1, B (C ) = 2, B (K ) = dn=2e and B (K ) = 2;3 n n 1;n m;n m + dn=2e1form n. 1 t t t t 1 1 1 2 3 4 , l J t t l , , J l L L l t 2 l , , l J L L , t t t l 2 3 3 , l J L L J t 3 , l J L L , J , L L l t t t J J 1 2 5 t t t t t J J 4 4 5 4 5 Figure 1: Bandwidth numb erings for P ;C ;K and K . 4 5 1;4 2;3 For a prop er numb ering f ,the edgesum s (G) produced by f is given by f X s (G)= jf (u) f (v )j. f uv 2E (G) The edgesum s(G) of a graph G is de ned by s(G)=minfs (G):f is a prop er numb ering of Gg: f A prop er numb ering that achieves the edgesum of a graph is called an edge- sum numbering. The term here called edgesum means exactly the same as the terms bandwidth sum or minimum sum which have b een used by some previous investigators. For example, Figure 2 shows edgesum numb erings for the graphs P ;C ;K 4 5 1;4 and K . In general, s(P ) = n 1 and s(C )=2(n 1). Yao and Wang[100] 2;3 n n showed that 8 n(n +2) > > > if n 0 (mo d 2) > < 4 s(K )= 1;n > > > n +1 > 2 : ( ) if n 1 (mo d 2) 2 and, for m n, Williams[96] established that 8 2 3 2 > 3n m m +6m n +4m > > if n m 0( mo d 2) > > < 12 s(K )= m;n > > 2 3 2 > 3n m m +6m n + m > > : if n m 1( mo d 2): 12 Also, for a prop er numb ering f , the pro le width w (v ) of a vertex v in a f graph G is the number w (v )= max (f (v ) f (x)) f x2N [v ] 2 t t t t 1 1 1 2 2 4 , l J t t l , , J l L L l t 2 l , , l J L L , t t t 2 5 l 3 , l J L L J t 3 , l J L L , J , L L l t t t J J 1 3 5 t t t t t J J 4 4 5 3 4 Figure 2: Edgesum numb erings for P ;C ;K and K . 4 5 1;4 2;3 t t t t 1 1 1 2 4 5 , l J t t l , , J L L l l t 2 l , , l J L L , t t t l 2 5 5 , l J L L J t 4 , l J L L , J , L L t t t l J J 1 2 3 t t t t J 3 t J 3 4 3 4 Figure 3: Pro le numb erings for P ;C ;K and K . 4 5 1;4 2;3 where N [v ]=fx 2 V : x = v or xv 2 E g is the closed neighborhood of v . Since v 2 N [v ], we have w (v ) = 0 if f (v ) f (x) for all x 2 N [v ]. The pro le (also f called skyline) P (G) of a proper numbering f of G is de ned by f X P (G)= w (v ) f f v 2V and the pro le P(G) of G is the number P (G) = minfP (G): f is a prop er numb ering of Gg: f A prop er numb ering f is called a pro le numbering of G if P (G)= P (G). f For example, Figure 3 shows pro le numb erings for the graphs P , C , K 4 5 1;4 and K . In general, P (P ) = n 1, P (C ) = 2n 3, P (K ) = n and, for 2;3 n n 1;n m n, P (K )=mn + m(m 1)=2 (see Lin and Yuan[65]). m;n For a prop er numb ering f on a graph G of order n,the complementary num- 0 0 bering f on G is de ned by f (v )= n +1 f (v ) for each vertex v in G. Then 0 0 B (G)= B (G) and s (G)=s (G). Thus the complementary numb ering of any f f f f bandwidth (or edgesum) numb ering is also a bandwidth (or edgesum) number- ing. However this relation do es not hold for pro le numb erings, as is illustrated in Figure 4. The decision problem corresp onding to nding the bandwidth of an arbi- trary graph was shown to be NP-complete by Papadimitriou[82]. Garey, Gra- ham, Johnson and Knuth[25] showed that the problem is NP-complete even for 3 1 4 v v v v 4 1 @ @ @ @ 2 3 3 2 v v v v @ @ 0 P (G)=3 P (G)=6 f f Figure 4: Complementary numb erings, di erent pro le results. trees of maximum degree 3. The decision problem asso ciated with determin- ing the edgesum for an arbitrary graph (sometimes called linear layout or the linear arrangement problem) was shown to be NP-complete by Garey, Johnson and Sto ckmeyer[27 ]; but the edgesum for trees is p olynomal. In fact, Chung[14 ] provided the most ecient algorithm known to date to achieve an edgesum num- b ering for arbitrary trees. Lin and Yuan[65] indicated that the pro le minimiza- tion problem of an arbitrary graph is equivalenttotheinterval graph completion problem, which was shown to be NP-complete by Garey and Johnson[26]. Kuo and Chang[52] provide a p olynomial algorithm to achieve a pro le numb ering for an arbitrary tree of order n. Wesay that the bandwidth, edgesum, or pro le numb ering problem is solved for a class of graphs if a p olynomial time algorithm is known to achieve the numb ering, or if a formula to describ e the parameter value (bandwidth, edgesum or pro le) is known. 2 Survey of results The reader should esp ecially note the original survey pap er on bandwidth by Chinn, J. Chvatalova, Dewdney, and Gibbs [10]. This provides many of the key concepts and inequalities up on which more recentwork is based. Some additional survey material is included in Chung[13]. Another excellent resource is Chapter 21, by Miller, of Applications of Discrete Mathematics [76]. A large number of approximation algorithms for the bandwidth and pro le of a variety of graphs have b een given. Approximation algorithms for general graphs include those given in Cheng[9 ], Cuthill and McKee[19 ], Gibbs, Poole, and Sto ckmeyer[28 ], GowriSankaran and Opatrny[31 ], Je [44], King[48], Ko o and Lee[50], Lai, Weingarten and Eshraghi[53], Luo[72], Quo c and O'Leary[83], Snay[88 ], and Wiegers and Monien[95]. Everstine[23 ], Hein and Groten[40] and Smyth[87] provide comparisons of some of these algorithms. Approximation al- 4 gorithms for trees or caterpillars are given in GowriSankaran, Miller and Opatrny [30], Odlyzko and Wilf[80], and Haralambides, Makedon and Monien[33]. A considerable amount of work has b een published providing bounds on the bandwidth of graphs. Harp er (see [38] and [39]) rst worked on bandwidth and edgesum problems and he develop ed some of the techniques and approaches to problems that have since b ecome widely used. The basic lower bound for band- width was established in [38]. It has since b een re ned by Hare and Hare[35] and by Li and Lin[63]. Anumb er of the imp ortant b ounds on bandwidth are provided in the survey pap er [10]. We will now list some of the more recent work. Let D (G) denote the diameter of connected graph G.
Recommended publications
  • How to Morph Graphs on the Torus
    How to Morph Graphs on the Torus Erin Wolf Chambers† Jeff Erickson‡ Patrick Lin‡ Salman Parsa† Abstract first algorithm to morph graphs on any higher-genus surface. In fact, it is the first algorithm to compute We present the first algorithm to morph graphs on the torus. any form of isotopy between surface graphs; existing Given two isotopic essentially 3-connected embeddings of the algorithms to test whether two graphs on the same surface same graph on the Euclidean flat torus, where the edges in both are isotopic are non-constructive 29 . Our algorithm drawings are geodesics, our algorithm computes a continuous [ ] outputs a morph consisting of O n steps; within each step, deformation from one drawing to the other, such that all edges ( ) all vertices move along parallel geodesics at (different) are geodesics at all times. Previously even the existence of constant speeds, and all edges remain geodesics (“straight such a morph was not known. Our algorithm runs in O n1+!=2 ( ) line segments”). Our algorithm runs in O n1+!=2 time; the time, where ! is the matrix multiplication exponent, and the ( ) running time is dominated by repeatedly solving a linear computed morph consists of O n parallel linear morphing steps. ( ) system encoding a natural generalization of Tutte’s spring Existing techniques for morphing planar straight-line graphs do embedding theorem. not immediately generalize to graphs on the torus; in particular, Cairns’ original 1944 proof and its more recent improvements rely on the fact that every planar graph contains a vertex of degree 1.1 Prior Results (and Why They Don’t Generalize).
    [Show full text]
  • Parallelization of Reordering Algorithms for Bandwidth and Wavefront Reduction
    Parallelization of Reordering Algorithms for Bandwidth and Wavefront Reduction Konstantinos I. Karantasis∗, Andrew Lenharthy, Donald Nguyenz, Mar´ıa J. Garzaran´ ∗, Keshav Pingaliy,z ∗Department of Computer Science, yInstitute for Computational Engineering and Sciences and University of Illinois at Urbana-Champaign zDepartment of Computer Science, fkik, [email protected] University of Texas at Austin [email protected], fddn, [email protected] Abstract—Many sparse matrix computations can be speeded More recently, reordering has become popular even in the up if the matrix is first reordered. Reordering was originally context of iterative sparse solvers where problems like mini- developed for direct methods but it has recently become popular mizing fill do not arise. The key computation in an iterative for improving the cache locality of parallel iterative solvers since reordering the matrix to reduce bandwidth and wavefront sparse solver is sparse matrix-vector multiplication (SpMV) can improve the locality of reference of sparse matrix-vector (say y = Ax). If the matrix is stored in compressed row- multiplication (SpMV), the key kernel in iterative solvers. storage (CRS) and the SpMV computation is performed by In this paper, we present the first parallel implementations of rows, the accesses to y and A enjoy excellent locality, but the two widely used reordering algorithms: Reverse Cuthill-McKee accesses to x may not. One way to improve the locality of (RCM) and Sloan. On 16 cores of the Stampede supercomputer, accesses to the elements of x is to reorder the sparse matrix our parallel RCM is 5.56 times faster on the average than a state-of-the-art sequential implementation of RCM in the HSL A using a bandwidth-reducing ordering (RCM is popular).
    [Show full text]
  • Planar Diameter Via Metric Compression
    Planar Diameter via Metric Compression Jason Li Merav Parter CMU Weizmann Institute [email protected] [email protected] Abstract We develop a new approach for distributed distance computation in planar graphs that is based on a variant of the metric compression problem recently introduced by Abboud et al. [SODA’18]. In our variant of the Planar Graph Metric Compression Problem, one is given an n-vertex planar graph G = (V, E), a set of S ⊆ V source terminals lying on a single face, and a subset of target terminals T ⊆ V. The goal is to compactly encode the S × T distances. One of our key technical contributions is in providing a compression scheme that encodes all S × T distances using Oe(jSj · poly(D) + jTj) bits1, for unweighted graphs with diameter D. This significantly improves the state of the art of Oe(jSj · 2D + jTj · D) bits. We also con- sider an approximate version of the problem for weighted graphs, where the goal is to encode (1 + e) approximation of the S × T distances, for a given input parameter e 2 (0, 1]. Here, our compression scheme uses Oe(poly(jSj/e) + jTj) bits. In addition, we describe how these compression schemes can be computed in near-linear time. At the heart of this compact com- pression scheme lies a VC-dimension type argument on planar graphs, using the well-known Sauer’s lemma. This efficient compression scheme leads to several improvements and simplifications in the setting of diameter computation, most notably in the distributed setting: • There is an Oe(D5)-round randomized distributed algorithm for computing the diameter in planar graphs, w.h.p.
    [Show full text]
  • On Bounding the Bandwidth of Graphs with Symmetry
    On bounding the bandwidth of graphs with symmetry E.R. van Dam∗ R. Sotirovy Abstract We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semidefinite program- ming relaxation of the minimum cut problem is obtained by strengthening the known semidefinite programming relaxation for the quadratic assignment problem (or for the graph partition problem) by fixing two vertices in the graph; one on each side of the cut. This fixing results in several smaller subproblems that need to be solved to obtain the new bound. In order to efficiently solve these subproblems we exploit symmetry in the data; that is, both symmetry in the min-cut problem and symmetry in the graphs. To obtain upper bounds for the bandwidth of graphs with symmetry, we de- velop a heuristic approach based on the well-known reverse Cuthill-McKee algorithm, and that improves significantly its performance on the tested graphs. Our approaches result in the best known lower and upper bounds for the bandwidth of all graphs un- der consideration, i.e., Hamming graphs, 3-dimensional generalized Hamming graphs, Johnson graphs, and Kneser graphs, with up to 216 vertices. Keywords: bandwidth, minimum cut, semidefinite programming, Hamming graphs, John- son graphs, Kneser graphs 1 Introduction For (undirected) graphs, the bandwidth problem (BP) is the problem of labeling the vertices of a given graph with distinct integers such that the maximum difference between the labels of adjacent vertices is minimal. Determining the bandwidth is NP-hard (see [35]) and it remains NP-hard even if it is restricted to trees with maximum degree three (see [17]) or to caterpillars with hair length three (see [34]).
    [Show full text]
  • Exact and Approximate Bandwidth
    Exact and Approximate Bandwidth Marek Cygan and Marcin Pilipczuk Dept. of Mathematics, Computer Science and Mechanics, University of Warsaw, Poland {cygan,malcin}@mimuw.edu.pl Abstract. In this paper we gather several improvements in the field of exact and approximate exponential-time algorithms for the BANDWIDTH problem. For graphs with treewidth t we present a O(nO(t)2n) exact algorithm. Moreover for the same class of graphs we introduce a subexponential constant-approximation scheme – for anyα>0 there exists a (1 + α)-approximation algorithm running in O(exp(c(t + n/α)logn)) time where c is a universal constant. These re- sults seem interesting since Unger has proved that BANDWIDTH does not belong to AP X even when the input graph is a tree (assuming P = NP). So some- what surprisingly, despite Unger’s result it turns out that not only a subexponen- tial constant approximation is possible but also a subexponential approximation scheme exists. Furthermore, for any positive integer r,wepresenta(4r − 1)- approximation algorithm that solves BANDWIDTH for an arbitrary input graph ∗ n in O (2 r ) time and polynomial space.1 Finally we improve the currently best known exact algorithm for arbitrary graphs with a O(4.473n ) time and space algorithm. In the algorithms for the small treewidth we develop a technique based on the Fast Fourier Transform, parallel to the Fast Subset Convolution techniques introduced by Bj¨orklund et al. This technique can be also used as a simple method of finding a chromatic number of all subgraphs of a given graph in O∗(2n) time and space, what matches the best known results.
    [Show full text]
  • Counting Subgraphs Via Homomorphisms∗
    Counting Subgraphs via Homomorphisms∗ Omid Aminiy Fedor V. Fominz Saket Saurabhx Abstract We introduce a generic approach for counting subgraphs in a graph. The main idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides new algorithms and unifies several well known results in algorithms and combinatorics includ- ing the recent algorithm of Bj¨orklund,Husfeldt and Koivisto for computing the chromatic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamil- tonian cycles, Ryser's formula for counting perfect matchings of a bipartite graph, and color coding based algorithms of Alon, Yuster, and Zwick. By combining our method with known combinatorial bounds, ideas from succinct data structures, partition functions and the color coding technique, we obtain the following new results: • The number of optimal bandwidth permutations of a graph on n vertices excluding n+o(n) a fixed graph as a minor can be computedp in time O(2 ); in particular in time O(2nn3) for trees and in time 2n+O( n) for planar graphs. • Counting all maximum planar subgraphs, subgraphs of bounded genus, or more gen- erally subgraphs excluding a fixed graph M as a minor can be done in 2O(n) time. • Counting all subtrees with a given maximum degree (a generalization of counting Hamiltonian paths) of a given graph can be done in time 2O(n). • A generalization of Ryser's formula: Let G be a graph with an independent set of size `. Then the number of perfect matchings in G can be found in time O(2n−`n3).
    [Show full text]
  • Application of Graph Theory to the Nonlinear Analysis of Large Space Structures Magdy Ibrahim Hindawy Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Application of graph theory to the nonlinear analysis of large space structures Magdy Ibrahim Hindawy Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Aerospace Engineering Commons Recommended Citation Hindawy, Magdy Ibrahim, "Application of graph theory to the nonlinear analysis of large space structures " (1986). Retrospective Theses and Dissertations. 8007. https://lib.dr.iastate.edu/rtd/8007 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a memuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction Is heavily dependent upon the quality of the material submitted. Pages In any manuscript may have Indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques Is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it Is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps.
    [Show full text]
  • Exact and Approximate Bandwidth
    Theoretical Computer Science 411 (2010) 3701–3713 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Exact and approximate bandwidthI Marek Cygan ∗, Marcin Pilipczuk Department of Mathematics, Computer Science and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland article info a b s t r a c t Article history: Received 17 October 2009 In this paper we gather several improvements in the field of exact and approximate Received in revised form 7 June 2010 exponential time algorithms for the Bandwidth problem. For graphs with treewidth t we Accepted 20 June 2010 present an O.nO.t/2n/ exact algorithm. Communicated by G. Ausiello Moreover, for any two positive integers k ≥ 2; r ≥ 1, we present a .2kr − 1/- n ∗ .k−1/r Keywords: approximation algorithm that solves Bandwidth for an arbitrary input graph in O .k / ∗ Bandwidth time and polynomial space where by O we denote the standard big O notation but omitting Exponential algorithm polynomial factors. Finally, we improve the currently best known exact algorithm for Exact algorithm arbitrary graphs with an O.4:383n/ time and space algorithm. Approximate algorithm In the algorithms for the small treewidth we develop a technique based on the Fast Graph Fourier Transform, parallel to the Fast Subset Convolution techniques introduced by Björklund et al. This technique can be also used as a simple method of finding a chromatic number of all subgraphs of a given graph in O∗.2n/ time and space, what matches the best known results. ' 2010 Elsevier B.V. All rights reserved.
    [Show full text]
  • Quantum Algorithms Via Linear Algebra: a Primer / Richard J
    QUANTUM ALGORITHMS VIA LINEAR ALGEBRA A Primer Richard J. Lipton Kenneth W. Regan The MIT Press Cambridge, Massachusetts London, England c 2014 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special [email protected]. This book was set in Times Roman and Mathtime Pro 2 by the authors, and was printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Lipton, Richard J., 1946– Quantum algorithms via linear algebra: a primer / Richard J. Lipton and Kenneth W. Regan. p. cm. Includes bibliographical references and index. ISBN 978-0-262-02839-4 (hardcover : alk. paper) 1. Quantum computers. 2. Computer algorithms. 3. Algebra, Linear. I. Regan, Kenneth W., 1959– II. Title QA76.889.L57 2014 005.1–dc23 2014016946 10987654321 We dedicate this book to all those who helped create and nourish the beautiful area of quantum algorithms, and to our families who helped create and nourish us. RJL and KWR Contents Preface xi Acknowledgements xiii 1 Introduction 1 1.1 The Model 2 1.2 The Space and the States 3 1.3 The Operations 5 1.4 Where Is the Input? 6 1.5 What Exactly Is the Output? 7 1.6 Summary and Notes 8 2 Numbers and Strings 9 2.1 Asymptotic Notation
    [Show full text]
  • The Bandwidths of a Matrix. a Survey of Algorithms
    DOI: 10.2478/awutm-2014-0019 Analele Universit˘at¸ii de Vest, Timi¸soara Seria Matematic˘a{ Informatic˘a LII, 2, (2014), 183{ 223 The Bandwidths of a Matrix. A Survey of Algorithms Liviu Octavian Mafteiu-Scai Abstract. The bandwidth, average bandwidth, envelope, profile and antibandwidth of the matrices have been the subjects of study for at least 45 years. These problems have generated considerable interest over the years because of them practical relevance in ar- eas like: solving the system of equations, finite element methods, circuit design, hypertext layout, chemical kinetics, numerical geo- physics etc. In this paper a brief description of these problems are made in terms of their definitions, followed by a comparative study of them, using both approaches: matrix geometry and graph theory. Time evolution of the corresponding algorithms as well as a short description of them are made. The work also contains concrete real applications for which a large part of presented al- gorithms were developed. AMS Subject Classification (2000). 65F50, 65F10, 68T, 08, 68R10, 65F15 Keywords. bandwidth, envelope, profile, average bandwidth, an- tibandwidth, system of equations, parallel, preconditioning, par- titioning, load-balancing 1 Introduction The bandwidth, average bandwidth, envelope, profile and antibandwidth op- timization of matrices have been the subjects of study for at least 45 years. 184 L.O. Mafteiu-Scai An. U.V.T. These problems have generated considerable interest over the years because of them practical relevance for a significant range of global optimization ap- plications. A first approach to bandwidth problem was made by Harper in 1964 [58]. The same author introduces the concept of the lower boundary of the band- width in paper [59].
    [Show full text]
  • MIT 6.851 Advanced Data Structures Prof
    MIT 6.851 Advanced Data Structures Prof. Erik Demaine Spring '12 Scribe Notes Collection TA: Tom Morgan, Justin Zhang Editing: Justin Zhang Contents 1 1. Temporal data structure 1 4 Scribers: Oscar Moll (2012), Aston Motes (2007), Kevin Wang (2007) 1.1 Overview . 4 1.2 Model and definitions . 4 1.3 Partial persistence . 6 1.4 Full persistence . 9 1.5 Confluent Persistence . 12 1.6 Functional persistence . 13 2 2. Temporal data structure 2 14 Scribers: Erek Speed (2012), Victor Jakubiuk (2012), Aston Motes (2007), Kevin Wang (2007) 2.1 Overview . 14 2.2 Retroactivity . 14 3 3. Geometric data structure 1 24 Scribers: Brian Hamrick (2012), Ben Lerner (2012), Keshav Puranmalka (2012) 3.1 Overview . 24 3.2 Planar Point Location . 24 3.3 Orthogonal range searching . 27 3.4 Fractional Cascading . 33 4 4. Geometric data structure 2 35 2 Scribers: Brandon Tran (2012), Nathan Pinsker (2012), Ishaan Chugh (2012), David Stein (2010), Jacob Steinhardt (2010) 4.1 Overview- Geometry II . 35 4.2 3D Orthogonal Range Search in O(lg n) Query Time . 35 4.3 Kinetic Data Structures . 38 5 5. Dynamic optimality 1 42 Scribers: Brian Basham (2012), Travis Hance (2012), Jayson Lynch (2012) 5.1 Overview . 42 5.2 Binary Search Trees . 42 5.3 Splay Trees . 45 5.4 Geometric View . 46 6 6. Dynamic optimality 2 50 Scribers: Aakanksha Sarda (2012), David Field (2012), Leonardo Urbina (2012), Prasant Gopal (2010), Hui Tang (2007), Mike Ebersol (2005) 6.1 Overview . 50 6.2 Independent Rectangle Bounds . 50 6.3 Lower Bounds .
    [Show full text]
  • Parameterized Complexity and Approximation Algorithms
    c The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please email: [email protected] doi:10.1093/comjnl/bxh000 Parameterized complexity and approximation algorithms Daniel´ Marx Institut f¨ur Informatik, Humboldt-Universit¨at zu Berlin, Unter den Linden 6, 10099, Berlin, Germany. Email: [email protected] Approximation algorithms and parameterized complexity are usually considered to be two separate ways of dealing with hard algorithmic problems. In this paper, our aim is to investigate how these two fields can be combined to achieve better algorithms than what any of the two theories could offer. We discuss the different ways parameterized complexity can be extended to approximation algorithms, survey results of this type, and propose directions for future research. 1. INTRODUCTION good as an optimum solution. However, for many ap- proximation algorithms in the literature, the error guar- Many of the computational problems that arise in antee is much higher (50%, 100%, 1000%, 10000%, or practice are optimization problems: the task is to find even worse). In this case we cannot argue that this ap- a solution where the cost, quality, size, profit, or some proximation algorithm is almost as good as an exact other measure is as large or small as possible. The algorithm. Nevertheless, such algorithms are still im- NP-hardness of an optimization problem implies that, portant from the theoretical point of view, as they al- unless P = NP, there is no polynomial-time algorithm low us to better understand and classify problems and that finds the exact value of the optimum.
    [Show full text]