Sideline Emergency Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prevention of Traumatic Corneal Ulcer in South East Asia
FROM OUR SOUTH ASIA EDITION Prevention of traumatic corneal ulcer in South East Asia S C AE Srinivasan/ (c)M Country Principal Investigator and Lead Principal Investigator with village health workers in Bhutan Dr. M. Srinivasan ciasis, and leprosy, are declining, and (VVHW) of the Government were utilized Director Emeritus, Aravind Eye Care, soon the majority of corneal blindness will to identify ocular injury and treat corneal Madurai, Tamil Nadu India. be due to microbial keratitis. Most abrasion corneal ulcers occur among agricultural Myanmar: Village Health Workers (VHW) workers in developing countries following of the health department Introduction corneal abrasion. India: paid village volunteers were utilized Corneal ulceration is a leading cause of Several non-randomized prevention visual impairment globally, with a dispro- studies conducted before 2000 Inclusion criteria 2 portionate burden in developing (Bhaktapur Eye Study) and during 2002 • Resident of study area countries. It was estimated that 6 million to 2004 in India, Myanmar, and Bhutan • Corneal abrasion after ocular injury, corneal ulcers occur annually in the ten by World Health Organization(WHO), have confirmed by clinical examination with countries of South East Asia Region suggested that antibiotic ointment fluorescein stain and a blue torch encompassing a total population of 1.6 applied promptly after a corneal abrasion • Reported within 48 hours of the injury billion.1 While antimicrobial treatment is could lower the incidence of ulcers, • Subject aged >5 years of age generally effective in treating infection, relative to neighbouring or historic “successful” treatment is often controls.3-4 Prevention of traumatic Exclusion criteria associated with a poor visual outcome. -
Diagnoses to Include in the Problem List Whenever Applicable
Diagnoses to include in the problem list whenever applicable Tips: 1. Always say acute or open when applicable 2. Always relate to the original trauma 3. Always include acid-base abnormalities, AKI due to ATN, sodium/osmolality abnormalities 4. Address in the plan of your note 5. Do NOT say possible, potential, likely… Coders can only use a real diagnosis. Make a real diagnosis. Neurological/Psych: Head: 1. Skull fracture of vault – open vs closed 2. Basilar skull fracture 3. Facial fractures 4. Nerve injury____________ 5. LOC – include duration (max duration needed is >24 hrs) and whether they returned to neurological baseline 6. Concussion with or without return to baseline consciousness 7. DAI/severe concussion with or without return to baseline consciousness 8. Type of traumatic brain injury (hemorrhages and contusions) – include size a. Tiny = <0.6 cm b. Small/moderate = 0.6-1 cm c. Large/extensive = >1 cm 9. Cerebral contusion/hemorrhage 10. Cerebral edema 11. Brainstem compression 12. Anoxic brain injury 13. Seizures 14. Brain death Spine: 1. Cervical spine fracture with (complete or incomplete) or without cord injury 2. Thoracic spine fracture with (complete or incomplete) or without cord injury 3. Lumbar spine fracture with (complete or incomplete) or without cord injury 4. Cord syndromes: central, anterior, or Brown-Sequard 5. Paraplegia or quadriplegia (any deficit in the upper extremity is consistent with quadriplegia) Cardiovascular: 1. Acute systolic heart failure 40 2. Acute diastolic heart failure 3. Chronic systolic heart failure 4. Chronic diastolic heart failure 5. Combined heart failure 6. Cardiac injury or vascular injuries 7. -
Differentiate Red Eye Disorders
Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular -
Corneal Abrasion
Corneal Abrasion What is a corneal abrasion? A corneal abrasion is a scratch on the surface of the clear part of the eye (cornea). It is most commonly due to trauma/injury. What are the symptoms of a corneal abrasion? Pain which can be severe Foreign body sensation Blurred vision Sensitivity to light Tearing (watering eyes) Redness What is the treatment of a corneal abrasion? Eye medication: Antibiotic drops or ointment used 3-4 times a day to prevent infection Dilating drops to decrease pain if you have a large corneal abrasion (this relieves spasm of the internal eye muscles. Please note that it will blur vision-particularly with reading.This effect may last for a few days after drop has been ceased.) Additional pain relief: Oral paracetamol, paracetamol and codeine Ice packs (place over injured eye: eyelids closed, ice pack covered in soft cloth) Sunglasses out of doors While an anaesthetic eye drop relieves immediate pain and allows the doctor to examine your eye, these drops cannot be used at home since they interfere with the natural healing of the cornea. What are the possible complications of a corneal abrasion? Infection Blurred vision from scarring Recurrent erosion syndrome: recurrent irritation from a poorly healed abrasion is most common after trauma from a sharp object such as a fingernail or paper. Corneal Abrasion Page 1 of 2 Things to remember: Most corneal abrasions heal within 3-4 days with pain improving each day until it has healed completely Do not rub your eye after the injury Do not touch your eye with cotton buds or tweezers Do not wear contact lenses until the eye has healed fully Seek medical attention if there is persistent or worsening discomfort, redness or decreased vision. -
Protocols for Injuries to the Eye Corneal Abrasion I
PROTOCOLS FOR INJURIES TO THE EYE CORNEAL ABRASION I. BACKGROUND A corneal abrasion is usually caused by a foreign body or other object striking the eye. This results in a disruption of the corneal epithelium. II. DIAGNOSTIC CRITERIA A. Pertinent History and Physical Findings Patients complain of pain and blurred vision. Photophobia may also be present. Symptoms may not occur for several hours following an injury. B. Appropriate Diagnostic Tests and Examinations Comprehensive examination by an ophthalmologist to rule out a foreign body under the lids, embedded in the cornea or sclera, or penetrating into the eye. The comprehensive examination should include a determination of visual acuity, a slit lamp examination and a dilated fundus examination when indicated. III. TREATMENT A. Outpatient Treatment Topical antibiotics, cycloplegics, and pressure patch at the discretion of the physician. Analgesics may be indicated for severe pain. B. Duration of Treatment May require daily visits until cornea sufficiently healed, usually within twenty-four to seventy-two hours but may be longer with more extensive injuries. In uncomplicated cases, return to work anticipated within one to two days. The duration of disability may be longer if significant iritis is present. IV. ANTICIPATED OUTCOME Full recovery. CORNEAL FOREIGN BODY I. BACKGROUND A corneal foreign body most often occurs when striking metal on metal or striking stone. Auto body workers and machinists are the greatest risk for a corneal foreign body. Hot metal may perforate the cornea and enter the eye. Foreign bodies may be contaminated and pose a risk for corneal ulcers. II. DIAGNOSTIC CRITERIA A. Pertinent History and Physical Findings The onset of pain occurs either immediately after the injury or within the first twenty-four hours. -
Cervical Spine Injury Risk Factors in Children with Blunt Trauma Julie C
Cervical Spine Injury Risk Factors in Children With Blunt Trauma Julie C. Leonard, MD, MPH,a Lorin R. Browne, DO,b Fahd A. Ahmad, MD, MSCI,c Hamilton Schwartz, MD, MEd,d Michael Wallendorf, PhD,e Jeffrey R. Leonard, MD,f E. Brooke Lerner, PhD,b Nathan Kuppermann, MD, MPHg BACKGROUND: Adult prediction rules for cervical spine injury (CSI) exist; however, pediatric rules abstract do not. Our objectives were to determine test accuracies of retrospectively identified CSI risk factors in a prospective pediatric cohort and compare them to a de novo risk model. METHODS: We conducted a 4-center, prospective observational study of children 0 to 17 years old who experienced blunt trauma and underwent emergency medical services scene response, trauma evaluation, and/or cervical imaging. Emergency department providers recorded CSI risk factors. CSIs were classified by reviewing imaging, consultations, and/or telephone follow-up. We calculated bivariable relative risks, multivariable odds ratios, and test characteristics for the retrospective risk model and a de novo model. RESULTS: Of 4091 enrolled children, 74 (1.8%) had CSIs. Fourteen factors had bivariable associations with CSIs: diving, axial load, clotheslining, loss of consciousness, neck pain, inability to move neck, altered mental status, signs of basilar skull fracture, torso injury, thoracic injury, intubation, respiratory distress, decreased oxygen saturation, and neurologic deficits. The retrospective model (high-risk motor vehicle crash, diving, predisposing condition, neck pain, decreased neck mobility (report or exam), altered mental status, neurologic deficits, or torso injury) was 90.5% (95% confidence interval: 83.9%–97.2%) sensitive and 45.6% (44.0%–47.1%) specific for CSIs. -
DCMC Emergency Department Radiology Case of the Month
“DOCENDO DECIMUS” VOL 4 NO 9 September 2017 DCMC Emergency Department Radiology Case of the Month These cases have been removed of identifying information. These cases are intended for peer review and educational purposes only. Welcome to the DCMC Emergency Department Radiology Case of the Month! In conjunction with our Pediatric Radiology specialists from ARA, we hope you enjoy these monthly radiological highlights from the case files of the Emergency Department at DCMC. These cases are meant to highlight important chief complaints, cases, and radiology findings that we all encounter every day. Conference Schedule: September 2017 If you enjoy these reviews, we invite you to check out Pediatric Emergency Medicine 6th - 9:00 Asthma……………………………….……..…Dr Ryan 10:00 Sports Meds/MSK Disorders……………Dr Santelli Fellowship Radiology rounds, which are offered 11:00 QI Improvement………..……………………….Dr Iyer 12:00 ECG Series…………..Dr Yee & Electrophysiologist quarterly and are held with the outstanding support of the Pediatric Radiology specialists at 13th - 10:00 FTT/Feeding Problems in the ED……Dr Whitaker 11:00 Lac Repair/Plastics………..…Dr Kienstra/Salinas Austin Radiologic Association. AAP Meeting: 16 - 19 If you have and questions or feedback regarding 20th - 9:00 Chronic Abdominal Pain…………….…Dr Siddiqui 10:00 Toxicology…………………..Dr Friesen/Arredondo the Case of the Month format, feel free to 11:00 Populations and Sampling…………..Dr Wilkinson email Robert Vezzetti, MD at 12:00 ED Department Meeting [email protected]. 26th - Journal club 27 - 9:00 M&M…………………..………..…Dr Schwartz/Schunk This Month: Pediatric eye injuries can be devastating. 10:00 Board review: Neurology……………….Dr Whitaker Often, imaging is employed to evaluate the extent of an 12:00 Research Update…………..………..….Dr Wilkinson injury and is used as a pre-operative measure to give a sub Guest Speaker: Dr Anees Siddiqui, Pediatric Gastroenterology specialist a good idea of the anatomy involved in the Dell Children’s Medical Center, SFC injury. -
Anesthesia for Trauma
Anesthesia for Trauma Maribeth Massie, CRNA, MS Staff Nurse Anesthetist, The Johns Hopkins Hospital Assistant Professor/Assistant Program Director Columbia University School of Nursing Program in Nurse Anesthesia OVERVIEW • “It’s not the speed which kills, it’s the sudden stop” Epidemiology of Trauma • ~8% worldwide death rate • Leading cause of death in Americans from 1- 45 years of age • MVC’s leading cause of death • Blunt > penetrating • Often drug abusers, acutely intoxicated, HIV and Hepatitis carriers Epidemiology of Trauma • “Golden Hour” – First hour after injury – 50% of patients die within the first seconds to minutesÆ extent of injuries – 30% of patients die in next few hoursÆ major hemorrhage – Rest may die in weeks Æ sepsis, MOSF Pre-hospital Care • ABC’S – Initial assessment and BLS in trauma – GO TEAM: role of CRNA’s at Maryland Shock Trauma Center • Resuscitation • Reduction of fractures • Extrication of trapped victims • Amputation • Uncooperative patients Initial Management Plan • Airway maintenance with cervical spine protection • Breathing: ventilation and oxygenation • Circulation with hemorrhage control • Disability • Exposure Initial Assessment • Primary Survey: – AIRWAY • ALWAYS ASSUME A CERVICAL SPINE INJURY EXISTS UNTIL PROVEN OTHERWISE • Provide MANUAL IN-LINE NECK STABILIZATION • Jaw-thrust maneuver Initial Assessment • Airway cont’d: – Cervical spine evaluation • Cross table lateral and swimmer’s view Xray • Need to see all seven cervical vertebrae • Only negative CT scan R/O injury Initial Assessment • Cervical -
CASE REPORT Injuries Following Segway Personal
UC Irvine Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health Title Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature Permalink https://escholarship.org/uc/item/37r4387d Journal Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 16(5) ISSN 1936-900X Authors Ashurst, John Wagner, Benjamin Publication Date 2015 DOI 10.5811/westjem.2015.7.26549 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CASE REPORT Injuries Following Segway Personal Transporter Accidents: Case Report and Review of the Literature John Ashurst DO, MSc Conemaugh Memorial Medical Center, Department of Emergency Medicine, Benjamin Wagner, DO Johnstown, Pennsylvania Section Editor: Rick A. McPheeters, DO Submission history: Submitted April 20, 2015; Accepted July 9, 2015 Electronically published October 20, 2015 Full text available through open access at http://escholarship.org/uc/uciem_westjem DOI: 10.5811/westjem.2015.7.26549 The Segway® self-balancing personal transporter has been used as a means of transport for sightseeing tourists, military, police and emergency medical personnel. Only recently have reports been published about serious injuries that have been sustained while operating this device. This case describes a 67-year-old male who sustained an oblique fracture of the shaft of the femur while using the Segway® for transportation around his community. We also present a review of the literature. [West J Emerg Med. 2015;16(5):693-695.] INTRODUCTION no parasthesia was noted. In 2001, Dean Kamen developed a self-balancing, zero Radiograph of the right femur demonstrated an oblique emissions personal transportation vehicle, known as the fracture of the proximal shaft of the femur with severe Segway® Personal Transporter (PT).1 The Segway’s® top displacement and angulation (Figure). -
Saving Smiles Avulsion Pathway (Page 20) Saving Smiles: Fractures and Displacements (Page 22)
Greater Manchester Local Dental Network SavingSmiles Improving outcomes following dental trauma First Edition I Spring 2017 Practitioners’ Toolkit Contents 04 Introduction to the toolkit from the GM Trauma Network 06 History & examination 10 Maxillo-facial considerations 12 Classification of dento-alveolar injuries 16 The paediatric patient 18 Splinting 20 The AVULSED Tooth 22 The BROKEN Tooth 23 Managing injuries with delayed presentation SavingSmiles 24 Follow up Improving outcomes 26 Long term consequences following dental trauma 28 Armamentarium 29 When to refer 30 Non-accidental injury 31 What should I do if I suspect dental neglect or abuse? 34 www.dentaltrauma.co.uk 35 Additional reference material 36 Dental trauma history sheet 38 Avulsion pathways 39 Fractues and displacement pathway 40 Fractures and displacements in the primary dentition 41 Acknowledgements SavingSmiles Improving outcomes following dental trauma Ambition for Greater Manchester Introduction to the Toolkit from The GM Trauma Network wish to work with our colleagues to ensure that: the GM Trauma Network • All clinicians in GM have the confidence and knowledge to provide a timely and effective first line response to dental trauma. • All clinicians are aware of the need for close monitoring of patients following trauma, and when to refer. The Greater Manchester Local Dental Network (GM LDN) has established a ‘Trauma Network’ sub-group. The • All settings have the equipment described within the ‘armamentarium’ section of this booklet to support optimal treatment. Trauma Network was established to support a safer, faster, better first response to dental trauma and follow up care across GM. The group includes members representing general dental practitioners, commissioners, To support GM practitioners in achieving this ambition, we will be working with Health Education England to provide training days and specialists in restorative and paediatric dentistry, and dental public health. -
In Drivers of Open-Wheel Open Cockpit Race Cars
SPORTS MEDICINE SPINE FRACTURES IN DRIVERS OF OPEN-WHEEL OPEN COCKPIT RACE CARS – Written by Terry Trammell and Kathy Flint, USA This paper is intended to explain the mechanisms responsible for production of spinal fracture in the driver of an open cockpit single seat, open-wheel racing car (Indy Car) and what can be done to lessen the risk of fracture. In a report of fractures in multiple racing • Seated angle (approximately 45°) • Lumbar spine flexed series drivers (Championship Auto Racing • Hips and knees flexed • Seated semi-reclining Cars [CART]/Champ cars, Toyota Atlantics, Indy Racing League [IRL], Indy Lights and Figure 1: Body alignment in the Indy Car. Formula 1 [F1]), full details of the crash and mechanism of injury were captured and analysed. This author was the treating physician in all cases from 1996 to 2011. All images, medical records, data available BASILAR SKULL FRACTURE Use of this specific safety feature from the Accident Data Recorder-2 (ADR), Following a fatal distractive basilar is compulsory in most professional crash video, specific on track information, skull fracture in 1999, the Head and Neck motorsport sanctions and has resulted in a post-accident investigation of damage and Support (HANS) device was introduced into dramatic reduction to near elimination of direction of major impact correlated with Indy Cars. Basilar skull fracture occurs when fatal basilar skull fractures. No basilar skull ADR-2 data were analysed. Results provided neck tension exceeds 3113.75 N forces. fractures have occurred in the IRL since the groundwork for understanding spine No data demonstrates that HANS introduction of the HANS and since 2006 fracture and forces applied to the driver in predisposes the wearer to other cervical there has been only one cervical fracture. -
Pathophysiological Mechanisms of Root Resorption After Dental Trauma: a Systematic Scoping Review Kerstin M
Galler et al. BMC Oral Health (2021) 21:163 https://doi.org/10.1186/s12903-021-01510-6 RESEARCH ARTICLE Open Access Pathophysiological mechanisms of root resorption after dental trauma: a systematic scoping review Kerstin M. Galler1*, Eva‑Maria Grätz1, Matthias Widbiller1 , Wolfgang Buchalla1 and Helge Knüttel2 Abstract Background: The objective of this scoping review was to systematically explore the current knowledge of cellular and molecular processes that drive and control trauma‑associated root resorption, to identify research gaps and to provide a basis for improved prevention and therapy. Methods: Four major bibliographic databases were searched according to the research question up to Febru‑ ary 2021 and supplemented manually. Reports on physiologic, histologic, anatomic and clinical aspects of root resorption following dental trauma were included. Duplicates were removed, the collected material was screened by title/abstract and assessed for eligibility based on the full text. Relevant aspects were extracted, organized and summarized. Results: 846 papers were identifed as relevant for a qualitative summary. Consideration of pathophysiological mechanisms concerning trauma‑related root resorption in the literature is sparse. Whereas some forms of resorption have been explored thoroughly, the etiology of others, particularly invasive cervical resorption, is still under debate, resulting in inadequate diagnostics and heterogeneous clinical recommendations. Efective therapies for progres‑ sive replacement resorptions have not been established. Whereas the discovery of the RANKL/RANK/OPG system is essential to our understanding of resorptive processes, many questions regarding the functional regulation of osteo‑/ odontoclasts remain unanswered. Conclusions: This scoping review provides an overview of existing evidence, but also identifes knowledge gaps that need to be addressed by continued laboratory and clinical research.