Biological Data from a Survey of the Major Marine Benthic Habitats of the South Coast Between Red Island and Starvation Boat Harbour (23 March-2 April 1998)

Total Page:16

File Type:pdf, Size:1020Kb

Biological Data from a Survey of the Major Marine Benthic Habitats of the South Coast Between Red Island and Starvation Boat Harbour (23 March-2 April 1998) MARINE RESERVE IMPLEMENTATION: WA SOUTH COAST BIOLOGICAL DATA FROM A SURVEY OF THE MAJOR MARINE BENTHIC HABITATS OF THE SOUTH COAST BETWEEN RED ISLAND AND STARVATION BOAT HARBOUR (23 MARCH-2 APRIL 1998) Data Report: MRI/WSC/FBR - 41/2000 A collaborative project between the Marine Conservation Branch and the South Coast Region of the Western Australian Department of Conservation and Land Management, and the University of Western Australia Prepared by K.P. Bancroft & J.A. Davidson Marine Conservation Branch November 2000 Marine Conservation Branch Department of Conservation and Land Management 47 Henry St Marine Conservation Branch CALM T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 MARINE RESERVE IMPLEMENTATION: WA SOUTH COAST BIOLOGICAL DATA FROM A SURVEY OF THE MAJOR MARINE BENTHIC HABITATS OF THE SOUTH COAST BETWEEN RED ISLAND AND STARVATION BOAT HARBOUR (23 MARCH-2 APRIL 1998) Data Report: MRI/WSC/FBR - 41/2000 A collaborative project between the Marine Conservation Branch and the South Coast Region of the Western Australian Department of Conservation and Land Management, and the University of Western Australia Prepared by K.P. Bancroft & J.A. Davidson Marine Conservation Branch November 2000 Marine Conservation Branch Department of Conservation and Land Management 47 Henry St Marine Conservation Branch CALM Fremantle, Western Australia, 6160 T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 Marine Conservation Branch CALM T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 Marine Conservation Branch CALM ACKNOWLEDGEMENTS CALM Collaboration · Tim Daly - Technical Officer, MCB. · John Watson - Manager, South Coast Region. · Peter Collins - District Wildlife Officer, Albany District. · Mark True - Ranger, Fitzgerald River National Park. · John Lukins - CALM Volunteer. · Rein von Nordheim - CALM Volunteer. External Collaboration · Gary Kendrick - Botany Department, University of Western Australia. · Simon Montgomery - Botany Department, University of Western Australia. · Albertus Smit - Botany Department, University of Western Australia. · Jamie Allnutt - South Coast Regional Co-ordinator, Coastwest-Coastcare. Funding and resources · Funding for this project was provided by CALM’s Marine Conservation Branch (MCB). · Resources including scientific and technical assistance, logistical support and field equipment were provided by the Botany Department, University of Western Australia and MCB. · Resources including administrative assistance and logistical/operational support were provided by CALM’s South Coast Region. Cover: Courtesy of Eva Boogaard. This report may be cited as: Bancroft, K. P. and Davidson, J. A. (2000). Biological data from a survey of the major marine benthic habitats of the South Coast between Red Island and Starvation Boat Harbour (23 March-2 April). Data Report: MRI/WSC/FBR-41/2000. November 2000. Marine Conservation Branch, Department of Conservation and Land Management (Unpublished report). Copies of this report may be obtained from: Marine Conservation Branch I T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 Marine Conservation Branch CALM Department of Conservation and Land Management 47 Henry St., Fremantle, Western Australia, 6160 Ph: 61-8-9432 5100; Fax: 61-8-9430 5408 II T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 Marine Conservation Branch CALM SUMMARY This report presents the results of a shore-based biological field survey of the major benthic habitats of the nearshore marine environment adjacent to the eastern section of the Fitzgerald Biosphere Reserve, from Red Island to Starvation Boat Harbour. The survey was carried out to systematically and quantitatively examine the shallow water fish fauna and macroalgal communities of the major benthic habitats within this region. The field survey was conducted from 23 March 1998 to 2 April 1998 and coordinated by the Western Australian Department of Conservation and Land Management’s (CALM’s) Marine Conservation Branch in collaboration with staff from CALM’s South Coast Region, and marine scientists from the University of Western Australia. The report of the Marine Parks and Reserves Selection Working Group (CALM, 1994), identified a number of marine areas adjacent to existing terrestrial reserves along the south coast, that were considered suitable candidate areas for possible incorporation into the state system of representative marine conservation reserves. This included several areas adjacent to the Fitzgerald Biosphere Reserves. As a result of the high conservation value of these areas, a biological field survey of the major benthic habitats adjacent to the western section of the Fitzgerald Biosphere Reserve, from Groper Bluff to Red Island, was undertaken in March 1997. A second biological field survey (presented in this document) was conducted as a follow-up survey, to gather data on the major benthic habitats adjacent to the eastern section of the Fitzgerald Biosphere Reserve, from Red Island to Starvation Boat Harbour. The primary objectives of this follow-up survey were to provide quantitative information on the fish fauna and macroalgal communities at representative sites within the major benthic habitats and to qualitatively investigate the influence of physical parameters, such as substrate type and wave exposure, on community diversity. The survey also involved the collection of data that can be utilised as baseline information for long-term monitoring of biological communities in these waters. The objectives of the survey were achieved. The data acquired during this survey is important for the determination of the relative conservation values of the respective major benthic habitats of the nearshore marine environment, adjacent to the eastern section of the Fitzgerald Biosphere Reserve. It will also contribute to the information base that would be required for any future marine conservation reserve planning process, during which marine reserve boundaries and management zones would be considered for areas such as the Fitzgerald River and Stokes Inlet region. III T:\144-Marine Conservation Branch\Shared Data\Current_MCB_reports\MRI\mri_4100\mri_4100.doc 11:24 25/06/01 Marine Conservation Branch CALM CONTENTS ACKNOWLEDGEMENTS.........................................................................................................I SUMMARY..............................................................................................................................III LIST OF FIGURES.................................................................................................................. IV LIST OF TABLES ................................................................................................................... IV 1 INTRODUCTION .............................................................................................................. 1 1.1 BACKGROUND....................................................................................................................1 1.2 OBJECTIVES........................................................................................................................2 2 METHODS......................................................................................................................... 2 2.1 SURVEY AREA ....................................................................................................................2 2.2 SITE SELECTION..................................................................................................................5 2.3 QUANTITATIVE SAMPLING METHODOLOGY.........................................................................5 2.3.1 Visual census of fish fauna ....................................................................................... 5 2.3.2 Quadrat sampling of macroalgal assemblages.......................................................... 6 2.4 QUALITATIVE SAMPLING METHODOLOGY ...........................................................................6 3 RESULTS............................................................................................................................ 6 3.1 SITE AND HABITAT DATA ..................................................................................................6 3.2 FISH DATA .......................................................................................................................12 3.3 MACROALGAE DATA .......................................................................................................12 4 DATA MANAGEMENT .................................................................................................. 12 4.1 DATA REPORT..................................................................................................................12 4.2 HABITAT DATA ...............................................................................................................13 5 REFERENCES ................................................................................................................. 13 APPENDICES.......................................................................................................................... 14 APPENDIX I LATITUDE AND LONGITUDES OF SITES SAMPLED IN THE MAJOR BENTHIC HABITATS OF THE STUDY AREA ....................................................................................
Recommended publications
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • Diet of the Australian Sea Lion (Neophoca Cinerea): an Assessment of Novel DNA-Based and Contemporary Methods to Determine Prey Consumption
    Diet of the Australian sea lion (Neophoca cinerea): an assessment of novel DNA-based and contemporary methods to determine prey consumption Kristian John Peters BSc (hons), LaTrobe University, Victoria Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Adelaide (October, 2016) 2 DECLARATION OF ORIGINALITY I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
    [Show full text]
  • Dynamic Distributions of Coastal Zooplanktivorous Fishes
    Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter.
    [Show full text]
  • CHAPTER 1: General Introduction
    CHAPTER 1: General Introduction 1.1 MARINE PROTECTED AREAS & CONSERVATION PLANNING 1.1.1 Need for Marine Protected Areas There is an increasing level of threat to marine ecosystems associated with rising population and advancing technology at global, regional, and local scales (Worm et al. 2006, Halpern et al. 2008, Mora et al. 2009, Stallings 2009). Pressures include higher levels of exploitation using more-sophisticated techniques; response to pressures can include reduction in biodiversity (Robbins et al. 2006, Watson et al. 2007, Roberts 2009). Direct effects of human activity include fishing and habitat loss with impacts to biotic communities and ecological processes (Babcock et al. 1999, Tuya et al. 2004, Robbins et al. 2006, Worm et al. 2006, Myers et al. 2007, Stallings 2009). Indirect effects can include altered oceanographic patterns and ecosystems associated with climate change (Hobday et al. 2006, Hoegh-Guldberg et al. 2007, Poloczanska et al. 2007). These threats and pressures require active management and greater understanding if we are to minimise our impact on marine biodiversity (Roberts & Polunin 1991, Shears & Babcock 2002, Lubchenco et al. 2003, McCook et al. 2009). Spatial protection, through Marine Protected Areas (MPAs) has been recognised and adopted worldwide as an essential component of the overall approach to maintaining biodiversity (Roberts & Hawkins 2000, Palumbi 2002, Lubchenco et al. 2003, Selig & Bruno 2010), either as a primary management mechanism or as a back-up insurance policy (Russ 2002), and many studies have demonstrated their value (Roberts & Hawkins 2000, Roberts et al. 2001, Russ 2002, Halpern 2003, Willis et al. 2003, Russ et al.
    [Show full text]
  • Differences Between Underwater Visual Census and Baited Remote Underwater Video
    Vol. 400: 19–36, 2010 MARINE ECOLOGY PROGRESS SERIES Published February 11 doi: 10.3354/meps08377 Mar Ecol Prog Ser A comparison of two survey methods: differences between underwater visual census and baited remote underwater video Madhavi A. Colton*, Stephen E. Swearer Department of Zoology, University of Melbourne, Parkville, Victoria 3010, Australia ABSTRACT: Essential to any model, conservation or management plan are measures of the distribu- tion and abundance of a species. Countless methods for estimating these parameters exist, making it essential to assess the limitations and biases associated with a particular sampling protocol. Here, we compare between 2 methods commonly used to survey nearshore fish assemblages. Although most commonly employed, underwater visual census (UVC) may yield biased estimates of abundance depending on the strength of a fish’s behavioural response (i.e. avoidance, attraction) to the presence of divers. Baited remote underwater video (BRUV) techniques have shown promise in overcoming some of the limitations of UVC, but are unable to provide an absolute measure of density in turbulent environments. We compare the abilities of these 2 methods to survey the nearshore rocky reef ichthy- ofauna of Southeast Australia. We found that relative to BRUV, UVC recorded more individuals (in terms of all species, herbivores, cryptic species, and most territorial species), higher richness at both the species and family level, and higher biodiversity as measured using the Shannon Index. These findings remain even when the data were adjusted for differences in sampling effort. In contrast, BRUV recorded proportionally more mobile predators, and a more taxonomically distinct population, though only when taxonomic evenness was not taken into account.
    [Show full text]
  • Encounter Marine Park”
    Report to Department of Environment, Water and Natural Resources, South Australia ”Detecting changes in biodiversity indicators in South Australia’s Marine Parks: Encounter Marine Park” Report by Steven Delean June 2017 1 Contents 1 Executive summary 3 2 Recommendations 4 3 Introduction 5 4 Methods 6 4.1 Quantitative monitoring design .............................. 6 4.2 Existing sampling design in SA marine parks MER Program .............. 7 4.3 Indicator species and aggregated species abundance and biomass variables .. 10 4.4 Conceptual model for effects of marine park rezoning ................ 10 4.5 Generalised linear mixed models (random effects) ................... 10 4.6 Simulation-based power analysis using GLMM ..................... 11 4.6.1 Steps in simulation-based power analysis ................... 12 4.7 Statistical analysis of existing monitoring data ..................... 12 4.8 Simulating data and calculating power and precision ................. 13 4.8.1 Simulation summaries ............................... 14 5 Results 16 5.1 Integrated Summary: Minimum detectable changes in Fished species in En- counter MP ........................................... 16 5.1.1 Total abundance of fished species ........................ 16 5.1.2 Total biomass of fished species .......................... 18 5.2 Integrated Summary: Minimum detectable changes in Indicator species in En- counter MP ........................................... 24 5.2.1 Abundance of indicator fish and invertebrate species ............ 24 5.2.2 Biomass of indicator
    [Show full text]
  • ADP 2015 Fish Survey Adelaide Aqua Pty Ltd
    ADP 2015 Fish Survey Adelaide Aqua Pty Ltd ADP Autumn BRUVS survey report | Rev A 29/6/2015 Document history and status [ Revision IDate IDescr iption IBy IReview IApproved A 29/6/2015 Draft for client review G Barbara A Horan G Barbara Distribution of copies [ Revision ~~~Date issued ~~~ -C_o_m__ m_ e_n_ts________________________________ __ ________ approved ____________________________ ------------------------------------------ A 30/6/2015 VAyala For client review and approval ADP Autumn BRUVS survey report ~ACOBS~ ADP 2015 Fish Survey Project no: IW089000 Document title: ADP Autumn BRUVS survey report Document No.: IW0089000-00.K.K07/0001 Revision: Rev A Date: 29 June 2015 Client name: Adelaide Aqua Pty Ltd Client no: PR-PLN-01-A5 Project manager: Greg Barbara Author: Dr Greg Barbara File name: I :\1E \Projects\IW089000\Deliverables\Reports\Autumn ADP Fish Survey_RevA.docx Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 6, 30 Flinders Street Adelaide SA 5000 Australia T +61 8 8113 5400 F +61 8 8113 5440 www.jacobs.com ©Copyright 2015 Jacobs Group (Australia) Ply limited. The concepts and infonnation contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written penn iss ion of Jacobs constitutes an infringement of copyright. limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client. and is subject to. and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for. or in respect of, any use of, or reliance upon, this report by any third party.
    [Show full text]
  • UNCOMMON, CRYPTIC and SITE-ASSOCIATED REEF FISHES: RESULTS of SURVEYS ALONG FLEURIEU PENINSULA & in ENCOUNTER BAY 2009
    UNCOMMON, CRYPTIC and SITE-ASSOCIATED REEF FISHES: RESULTS OF SURVEYS ALONG FLEURIEU PENINSULA & IN ENCOUNTER BAY 2009 J. Baker1, H. Crawford2, D. Muirhead3, S. Shepherd4, J. Brook5, A. Brown6, and C. Hall3 1 J.L. Baker, Marine Ecologist, Somerton Park, SA, 5044. Email: [email protected] 2 H. Crawford, Visual Artist [email protected] 3 Marine Life Society of South Australia (MLSSA) 4Senior Research Fellow, SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 5 PO Box 111, Normanville, SA. 5204 6 Dept for Environment and Heritage, GPO Box 1047, Adelaide SA 5011 Photo: J. Baker Report for: Adelaide and Mt Lofty Ranges Natural Resources Management Board August 2009 UNCOMMON, CRYPTIC and SITE-ASSOCIATED REEF FISHES: RESULTS OF SURVEYS ALONG FLEURIEU PENINSULA & IN ENCOUNTER BAY 2009 SUMMARY Reef locations along the Fleurieu Peninsula and Encounter Bay were surveyed by diving and snorkelling, from December 2008 to June 2009. The surveys are part of a series we began in 2007, through which we have aimed to (i) develop a suitable non-destructive technique to search for various uncommon reef fishes (mostly benthic, and many cryptic) throughout South Australia; and (ii) record and photograph such fishes, in order to learn more about their distribution, habitats, and habits. Our target list comprises more than 50 species from 14 families, for which little information is available on full distribution within South Australia, and habitat. Examples of our records during the 2009 survey period included (i) one uncommonly recorded endemic
    [Show full text]
  • Geographe Bay to Flinders Bay) 28 January-8 February
    MARINE RESERVE IMPLEMENTATION: CENTRAL FOREST BIOLOGICAL SURVEY OF THE MAJOR BENTHIC HABITATS OF THE GEOGRAPHE BAY-CAPES-HARDY INLET REGION (GEOGRAPHE BAY TO FLINDERS BAY) 28 JANUARY-8 FEBRUARY Summary Report: MRI/CF/GBC-27/1999 Prepared by G A Kendrick, A Brearley, J Prince, E Harvey, C Sim, K P Bancroft, J Huisman & L Stocker November 1999 Marine Conservation Branch Department of Conservation and Land Management 47 Henry Street Fremantle, Western Australia, 6160 Marine Conservation Branch CALM MARINE RESERVE IMPLEMENTATION: CENTRAL FOREST BIOLOGICAL SURVEY OF THE MAJOR BENTHIC HABITATS OF THE GEOGRAPHE BAY-CAPES-HARDY INLET REGION (GEOGRAPHE BAY TO FLINDERS BAY) 28 JANUARY-8 FEBRUARY 1999 Summary Report: MRI/CF/GBC-27/1999 A collaborative project between CALM’s Marine Conservation Branch and South West Capes District Office, and the University of Western Australia A project partially funded through the Natural Heritage Trust’s Coast and Clean Seas Marine Protected Area Programme Project No: WA9703 Prepared by Gary A. Kendrick, Anne Brearley, Jane Prince, Euan Harvey & Cameron Sim The University of Western Australia Kevin Bancroft Marine Conservation Branch, CALM John Huisman & Laura Stocker Murdoch University November 1999 Marine Conservation Branch Department of Conservation and Land Management 47 Henry St Fremantle, Western Australia, 6160 T:\REPORTS\MRI\mri_2799\mri_2799.doc 10:08 18/12/99 Marine Conservation Branch CALM T:\REPORTS\MRI\mri_2799\mri_2799.doc 10:08 18/12/99 Marine Conservation Branch CALM ACKNOWLEDGMENTS Direction · Dr Chris Simpson - Manager, Marine Conservation Branch (MCB), Nature Conservation Division. CALM Collaboration · Kevin Bancroft - Marine Conservation Officer, MCB. · Tim Daly – Marine Technical Officer, MCB.
    [Show full text]
  • The Fish Communities and Main Fish Populations of the Jurien Bay Marine Park
    The fish communities and main fish populations of the Jurien Bay Marine Park Fairclough, D.V., Potter, I.C., Lek, E., Bivoltsis, A.K. and Babcock, R.C. Strategic Research Fund for the Marine Environment Collaborative Research Project Final Report May 2011 2 The fish communities and main fish populations of the Jurien Bay Marine Park Fairclough, D.V. Potter, I.C. Lek, E. Bivoltsis, A.K. Babcock, R.C. May 2011 Centre for Fish and Fisheries Research Murdoch University, South Street, Murdoch Western Australia 6150 ISBN: 978-0-86905-999-9 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. 3 4 Table of Contents 1.0 Executive Summary...........................................................................................................v 2.0 Acknowledgements ..........................................................................................................vii 3.0 General Introduction.........................................................................................................1 3.1 Marine protected areas.....................................................................................................1 3.1.1 Fisheries management goals .....................................................................................1 3.1.2 Indirect effects of MPAs...........................................................................................2
    [Show full text]
  • Urochordata, Pyuridae
    A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf Report to the South Australian Department for Environment and Heritage SARDI Publication No. F2010/000088-1 SARDI Research Report Series No. 424 David R. Currie and Shirley J. Sorokin SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 February 2010 A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf Report to the South Australian Department for Environment and Heritage David R. Currie and Shirley J. Sorokin February 2010 SARDI Publication No. F2010/000088-1 SARDI Research Report Series No. 424 Currie, D.R. and Sorokin, S.J. (2010) Trophodynamics of fish from Spencer Gulf This Publication may be cited as: Currie, D.R. and Sorokin, S.J. (2010). A preliminary evaluation of the distribution and trophodynamics of demersal fish from Spencer Gulf. Report to the South Australian Department for Environment and Heritage. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2010/000088-1. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Further Investigation Into Critical Habitat for Juvenile Dhufish
    Fisheries Research Report No. 265, 2015 Further investigation into critical habitat for juvenile dhufish (Glaucosoma hebraicum), artificial habitats and the potential to monitor annual juvenile recruitment NRM Project 09038 – Protecting inshore and demersal finfish. P. Lewis This project is supported by funding from the Western Australian Government’s State NRM Program Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 4230/14 Correct citation: Lewis, P., 2015. Further investigation into critical habitat for juvenile dhufish (Glaucosoma hebraicum), artificial habitats and the potential to monitor annual juvenile recruitment. NRM Project 09038 – Protecting inshore and demersal finfish. Fisheries Research Report No. 265. Department of Fisheries, Western Australia. 80pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au © Department of Fisheries, Western Australia. March 2015. ISSN: 1035 - 4549 ISBN: 978-1-921845-87-1 ii Fisheries Research Report [Western Australia] No. 265, 2015 Contents Executive Summary ............................................................................................................. 1 1.0 Background ..................................................................................................................
    [Show full text]