Patterns in the Distribution and Abundance of Reef Fishes in South Eastern Australia

Total Page:16

File Type:pdf, Size:1020Kb

Patterns in the Distribution and Abundance of Reef Fishes in South Eastern Australia Patterns in the Distribution and Abundance of Reef Fishes in South Eastern Australia Madhavi A. Colton Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy March 2011 Department of Zoology The University of Melbourne Parkville, Victoria 3010 Australia ABSTRACT This research investigated patterns in the distribution and abundance of nearshore fishes of south-eastern Australia. I used two methods to survey fishes, underwater visual census (UVC) and baited remote underwater video (BRUV). A comparison between these methods revealed that BRUV recorded higher relative abundance of mobile predators, while UVC observed higher relative abundance of herbivores, territorial species, and small site-attached species. These results suggest that studies surveying diversity would do best to employ multiple methods. In cases where funds are limited, UVC may provide a more complete estimate of diversity than BRUV as UVC recorded higher diversity, species richness and more individuals. Combining measures of abundance with habitat data, I investigated fish-habitat associations, specifically exploring how altering spatial grain influenced the strength of correlations between fish and habitat. Species of different sizes responded to habitat measured over different scales, with large-bodied species only displaying strong correlations with habitat when it was measured over large scales. These results suggest that research quantifying fish-habitat associations needs to take spatial grain into account. In addition, many species may respond to changes in habitat at scales larger than are typically investigated. Understanding not only how species interact with their environment but also the scale at which these associations occur is essential for management and conservation. I investigated biogeographic patterns in the distribution of fishes in Victoria using abundance measured by BRUV and UVC. The BRUV data displayed a cline in change across the state in which dissimilarities between locations were linearly related to distance. In contrast, data collected using UVC indicated the presence of a large faunal break in the vicinity of Ninety Mile Beach, and a second break between Cape Conran and Cape Howe, suggesting that contemporary habitat discontinuity, flow and/or temperature may be important factors structuring communities in this region. At a still larger scale, I explored relationships at upper and lower bounds between body size, geographic range size and abundance using data collected from Australia and New Zealand. At maxima, the relationship between body size and abundance was i negative but steeper than expected, possibly driven by diver-averse behaviour of large species. At minima, body size and geographic range size were positively related, implying that body size determines the minimum area that a species must occupy. In contrast, at the upper bound this relationship was negative for non-perciform fishes, a K-selected group whose geographic range size could be constrained by their limited dispersal capacity. Distribution-abundance relationships deviated from predictions, with a negative relationship at the upper bound for Perciformes, which could be driven by the high dispersal potential of widespread species that results in diffuse low- density populations. From these results, I concluded, first, that fishes appear to differ from terrestrial taxa, which may be attributed in part to large-bodied fishes’ limited capacity for dispersal. Second, the approach of applying regressions to maxima and minima uncovered relationships that would have been obscured had they been investigated at the mean, highlighting the importance of exploring limits in macroecological relationships. ii DECLARATION This is to certify that i. the thesis comprises only my original work towards the PhD except where indicated in the Preface, ii. due acknowledgement has been made in the text to all other material used, iii. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices. 7 March, 2011 Madhavi A. Colton Date iii PREFACE Chapter Four is a meta-analysis of data collected by myself, Dr. Sean Connell of the University of Adelaide, and Mr. Alejandro Pérez-Matus of Victoria University in Wellington, New Zealand. I conceived the idea for the chapter, analysed and wrote up the data. Dr. Connell and Mr. Pérez-Matus supplied measures of fish density that were made in the field. iv ACKNOWLEDGEMENTS Thanks are due first and foremost to my supervisor Dr. Stephen Swearer whose advice and support were invaluable. This work would not have been feasible without the field assistance of Mr. Dean Chamberlain, Mr. John Ford, Dr. Christian Jung, Mr. Matthew LeFeuvre and Mr. Malcolm Lindsay. Mr. Michael Sams was immensely helpful in identifying the invertebrates, algae and seagrasses in habitat photos. The Parks Victoria staff at the Mallacoota Office went above and beyond in their support of our research efforts at Gabo Island. Thanks also to the Parks Victoria crew at Wilsons Promontory. This research was funded by Natural Heritage Trust and Parks Victoria, and I was supported by an Australian Postgraduate Award and a Helen McPherson-Smith Scholarship. I was also supported by my husband Zack Kushner who showed incredible patience with me through this process. v TABLE OF CONTENTS General Introduction…………………………………………………………… 1 Literature Cited…………………………………………………………….. 3 Chapter One: A comparison of two survey methods: differences between underwater visual census and baited remote underwater video……………..... 6 Abstract…………………………………………………………….............. 6 Introduction………………………………………………………….……… 7 Materials & Methods……………………………………………………….. 12 Results………………………………………………………………………. 25 Discussion…………………………………………………………............... 30 Conclusion …………………………………………………………………. 40 Literature Cited……………………………………………………………... 40 Chapter Two: Body size and spatial grain influence fish-habitat associations in temperate marine fishes ……………………………………………………… 44 Abstract……………………………………………………………................ 44 Introduction………………………………………………………….……… 44 Materials & Methods………………………………………………………... 48 Results………………………………………………………………………. 54 Discussion…………………………………………………………............... 60 Literature Cited……………………………………………………………... 68 Chapter Three: Locating faunal breaks in the nearshore fish assemblage of Victoria, Australia…...………………………………………………………….. 71 Abstract……………………………………………………………................ 71 Introduction………………………………………………………….……… 71 Materials & Methods……………………………………………………….. 76 Results………………………………………………………………………. 82 Discussion…………………………………………………………............... 87 Literature Cited……………………………………………………………... 96 Chapter Four: Relationships between Geographic Range Size, Body Size and Abundance in Temperate Marine Fishes…………………..…………………. 98 Abstract……………………………………………………………................ 98 Introduction………………………………………………………….……… 99 Materials & Methods……………………………………………………….. 102 Results………………………………………………………………………. 110 Discussion…………………………………………………………............... 112 Conclusion …………………………………………………………………. 124 Literature Cited……………………………………………………………... 125 General Conclusion……………………………………………………………. 129 Literature Cited…………………………………………………………….. 130 vi GENERAL INTRODUCTION Ecology is fundamentally the study of the distribution and abundance of species, and these data are essential to any management or conservation plan. Numerous factors can influence where a species occurs and the densities its populations attain. Results from ecological studies investigating the mechanisms driving abundance and distribution are “inextricably scale-dependent” (Sale 1998). At the scale of 1000s km, for example, the distribution of fishes may be best explained by currents and their associated temperatures (e.g. Figueira & Booth 2010), while at the scale of a single reef, a species’ distribution may be strongly associated with structural complexity (e.g. Leum & Choat 1980, Wiens 1989). To gain a complete understanding of abundance and distribution requires investigating these parameters at multiple scales (Eagle et al. 2001, Meyer & Thuiller 2006, Thogmartin & Knutson 2007, Grober- Dunsmore et al. 2008). In particular, the terrestrial literature indicates that consideration of the scale at which an organism relates to its environment is important (Meyer & Thuiller 2006, Murakami et al. 2008), which is ultimately determined by its body size (Holling 1992). There is considerable evidence in the terrestrial literature, and some in the marine literature, to suggest that body size places an ultimate constraint on density (Mohr 1940, Damuth 1981, Marquet et al. 1990, Cotgreave 1993, McGill 2008) and is positively correlated with geographic range size (Brown 1995). In addition, at least in terrestrial systems, range size and abundance are also frequently related (Brown 1984, Borregaard & Rahbek 2010). More than just body size, however, determines how an organism relates to its environment. Behavioural attributes and life history interact to determine where a species can occur and it population growth. The study of distribution, or range size, is ultimately the study of dispersal and colonization (Myers 1997). Dispersal capacity and colonization success are a function of interactions between species-specific traits, e.g. reproductive mode and body size (e.g. Reaka 1980), and the environment (Marshall et al. 2010). Whether dispersal is a good predictor of range size in the marine environment is a matter of some debate (Jones et al. 2002, Hawkins
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Proceedings of the American Samoa Coral Reef Fishery Workshop
    Proceedings of the American Samoa Coral Reef Fishery Workshop Stacey Kilarski and Alan R. Everson (Editors) U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-114 Proceedings of the American Samoa Coral Reef Fishery Workshop Convention Center, Utulei, American Samoa October 21-23, 2008 Edited by: Stacey Kilarksi AECOS, Inc. 45-939 Kamehameha Highway Suite 104 Kane‘ohe, HI 96744 Alan R. Everson Pacific Islands Regional Office, NMFS Habitat Conservation Division 1601 Kapiolani Blvd Suite 1110 Honolulu, HI 96814 [email protected] NOAA Technical Memorandum NMFS-F/SPO-114 U.S. Department of Commerce Gary Locke, Secretary of Commerce National Oceanic and Atmospheric Administration Jane Lubchenco, Ph.D., Administrator of NOAA National Marine Fisheries Service Eric C. Schwaab, Assistant Administrator for Fisheries Suggested citation: Kilarski, Stacey, and Alan Everson (eds.). Proceedings of the American Samoa Coral Reef Fishery Workshop (October 2008). U.S. Dep. Commerce, NOAA Tech. Memo. NMFS- F/SPO114, 143 p. A copy of this report may be obtained from: Alan R. Everson Pacific Islands Regional Office, NMFS Habitat Conservation Division 1601 Kapiolani Blvd Suite 1110 Honolulu, HI 96814 [email protected] Or online at: http://spo.nmfs.noaa.gov/tm/ American Samoa Coral Reef Fishery Workshop Convention Center, Utulei, American Samoa October 21-23, 2008 Organizers: NOAA-Pacific Island Regional Office NOAA-Pacific Island Fishery Science Center Department
    [Show full text]
  • Australia-15-Index.Pdf
    © Lonely Planet 1091 Index Warradjan Aboriginal Cultural Adelaide 724-44, 724, 728, 731 ABBREVIATIONS Centre 848 activities 732-3 ACT Australian Capital Wigay Aboriginal Culture Park 183 accommodation 735-7 Territory Aboriginal peoples 95, 292, 489, 720, children, travel with 733-4 NSW New South Wales 810-12, 896-7, 1026 drinking 740-1 NT Northern Territory art 55, 142, 223, 823, 874-5, 1036 emergency services 725 books 489, 818 entertainment 741-3 Qld Queensland culture 45, 489, 711 festivals 734-5 SA South Australia festivals 220, 479, 814, 827, 1002 food 737-40 Tas Tasmania food 67 history 719-20 INDEX Vic Victoria history 33-6, 95, 267, 292, 489, medical services 726 WA Western Australia 660, 810-12 shopping 743 land rights 42, 810 sights 727-32 literature 50-1 tourist information 726-7 4WD 74 music 53 tours 734 hire 797-80 spirituality 45-6 travel to/from 743-4 Fraser Island 363, 369 Aboriginal rock art travel within 744 A Arnhem Land 850 walking tour 733, 733 Abercrombie Caves 215 Bulgandry Aboriginal Engraving Adelaide Hills 744-9, 745 Aboriginal cultural centres Site 162 Adelaide Oval 730 Aboriginal Art & Cultural Centre Burrup Peninsula 992 Adelaide River 838, 840-1 870 Cape York Penninsula 479 Adels Grove 435-6 Aboriginal Cultural Centre & Keep- Carnarvon National Park 390 Adnyamathanha 799 ing Place 209 Ewaninga 882 Afghan Mosque 262 Bangerang Cultural Centre 599 Flinders Ranges 797 Agnes Water 383-5 Brambuk Cultural Centre 569 Gunderbooka 257 Aileron 862 Ceduna Aboriginal Arts & Culture Kakadu 844-5, 846 air travel Centre
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • Water Research Laboratory
    Water Research Laboratory Never Stand Still Faculty of Engineering School of Civil and Environmental Engineering Eurobodalla Coastal Hazard Assessment WRL Technical Report 2017/09 October 2017 by I R Coghlan, J T Carley, A J Harrison, D Howe, A D Short, J E Ruprecht, F Flocard and P F Rahman Project Details Report Title Eurobodalla Coastal Hazard Assessment Report Author(s) I R Coghlan, J T Carley, A J Harrison, D Howe, A D Short, J E Ruprecht, F Flocard and P F Rahman Report No. 2017/09 Report Status Final Date of Issue 16 October 2017 WRL Project No. 2014105.01 Project Manager Ian Coghlan Client Name 1 Umwelt Australia Pty Ltd Client Address 1 75 York Street PO Box 3024 Teralba NSW 2284 Client Contact 1 Pam Dean-Jones Client Name 2 Eurobodalla Shire Council Client Address 2 89 Vulcan Street PO Box 99 Moruya NSW 2537 Client Contact 2 Norman Lenehan Client Reference ESC Tender IDs 216510 and 557764 Document Status Version Reviewed By Approved By Date Issued Draft J T Carley G P Smith 9 June 2017 Final Draft J T Carley G P Smith 1 September 2017 Final J T Carley G P Smith 16 October 2017 This report was produced by the Water Research Laboratory, School of Civil and Environmental Engineering, University of New South Wales for use by the client in accordance with the terms of the contract. Information published in this report is available for release only with the permission of the Director, Water Research Laboratory and the client. It is the responsibility of the reader to verify the currency of the version number of this report.
    [Show full text]
  • Stock Status of Queensland's Fisheries Resources 2009–10
    Stock status of Queensland’s Fisheries Queensland fisheries resources 2009–10 Employment, Development Economic Innovation and Department of Tomorrow’s Queensland: strong, green, smart, healthy and fair Stock status of Queensland’s fisheries resources 2009–10 PR10–5184 © The State of Queensland, Department of Employment, Economic Development and Innovation, 2010. Except as permitted by the Copyright Act 1968, no part of the work may in any form or by any electronic, mechanical, photocopying, recording, or any other means be reproduced, stored in a retrieval system or be broadcast or transmitted without the prior written permission of the Department of Employment, Economic Development and Innovation. The information contained herein is subject to change without notice. The copyright owner shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Enquiries about reproduction, including downloading or printing the web version, should be directed to [email protected] or telephone +61 7 3225 1398. Contents Acronyms 6 Fishery acronyms 6 Introduction 7 Stock status process 7 Stock status assessment 2009–10 8 Stocks with no assessment made 16 Stock background and status determination 17 Barramundi (Lates calcarifer) EC 18 Barramundi (Lates calcarifer) GOC 19 Bream–yellowfin (Acanthopagrus australis) EC 20 Bugs–Balmain (Ibacus chacei and I. brucei) EC 21 Bugs–Moreton Bay (Thenus australiensis & T. parindicus) EC 22 Cobia (Rachycentron canadum) EC 23 Coral trout (Plectropomus spp. and Variola spp.) EC 24 Crab–blue swimmer (Portunus pelagius) EC 25 Crab–mud (Scylla spp.) EC 26 Crab–mud (Scylla spp.) GOC 27 Crab–spanner (Ranina ranina) EC 28 Eel (Anguilla australis and A.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]