Stiffness Method (Frame Example)
Total Page:16
File Type:pdf, Size:1020Kb
Y 30 kN Stiffness Method (Frame Example) 3 Analyze the frame shown using Stiffness method. 3 m 2 E is constant for all members. 20 kN Section properties: 2 member Area Moment of Inertia* 1 5 m 1 A I 1 2 1.5A 3.5I 1 X
2 4 * A=0.04 m , I=0.0004/3 m A=300I 4 m
(I) Member stiffness Matrices in Global coordinates :
(1) Member 1: i-node=1, j-node=2, L= 5 m, 5 j= 2 4 x j xi 0 0 y j yi 5 0 6 c cos 0, s sin 1 x L 5 x L 5 1 EA 12EI 6EI 1 a 0.2EA 60EI, d 3 0.096EI, e 2 0.24EI, L L L 2 4EI 2EI f 0.8EI , g 0.4EI. i= 1 1 L L 3
2 2 K11 a c d s 0.096EI, K12 (a d)c s 0, K13 e s 0.24EI 2 2 K 22 a s d c 60EI, K 23 ec 0
K 33 f 0.8EI Coord. # 1 2 3 4 5 6 0.096 0 0.24 0.096 0 0.241 2 0 60 0 0 60 0 0.24 0 0.8 0.24 0 0.4 3 [K] EI 1 456 (See Stiffness Handout) 0.096 0 0.24 .096 0 0.24 0 60 0 0 60 0 6 0.24 0 0.4 0.24 0 0.8 (2) Member 2: i-node=2, j-node=3, L= 5 m,
x x 4 0 y y 8 5 c cos j i 0.8, s sin j i 0.3 x L 5 x L 5 E(1.5A) 12E(3.5I) 6E(3.5I) a 0.3EA 90EI, d 0.336EI, e 0.84EI, L L3 L2 4E(3.5I) 2E(3.5I) f 2.8EI , g 1.4EI. 8 L L 7 9 j= 3 2 5 1 Coord. # i= 2 4 6 4 5 6 7 8 9 2 2 K11 a c d s 57.7210EI 57.7210 43.0387 - 0.5040 - 57.721 - 43.0387 - 0.5040 4 K (a d)c s 43.0387 43.0387 32.6150 0.6720 43.0387 - 32.6150 0.6720 12 5 K13 e s 0.5040EI - 0.5040 0.6720 2.8000 0.5040 - 0.6720 1.4000 [K]2 EI 6 2 2 - 57.7210 - 43.0387 0.5040 57.7210 43.0387 0.5040 K 22 a s d c 32.6150EI K ec 0.6720 - 43.0387 - 32.6150 - 0.6720 43.0387 32.6150 - 0.6720 7 23 - 0.5040 0.6720 1.4000 0.5040 - 0.6720 2.8000 8 K33 f 2.8EI
(II) Structure Stiffness Matrix (Global Stiffness Matrix):
[K]99 [K]1 [K]2
1 2 3 4 5 6 7 8 9 0.096 0 -0.24 -0.096 0 -0.24 1 0 60 0 0 -60 0 2 -0.24 0 0.8 0.24 0 0.4 3 -0.096 0 0.24 0.096+ 0+ 0.24+ 4 57.721 43.0387 -0.504 -57.721 -43.0387 -0.504 =EI 0 -60 0 0+ 60+ 0+ 5 43.0387 32.615 0.672 -43.0387 -32.615 0.672 -0.24 0 0.4 0.24+ 0+ 0.8+ 6 -0.504 0.672 2.8 0.504 -0.672 1.4 -57.721 -43.0387 0.504 57.721 43.0387 0.504 7 -43.0387 -32.615 -0.672 43.0387 32.615 -0.672 8 -0.504 0.672 1.4 0.504 -0.672 2.8 9 or
0.0960 0 - 0.24 - 0.0960 0 - 0.2400 0 0 0 0 60.0 0 0 - 60.0 0 0 0 0 - 0.240 0 0.8000 0.2400 0 0.4000 0 0 0 - 0.096 0 0.2400 57.8170 43.0387 - 0.264 - 57.721 - 43.0387 - 0.504 [K] EI 0 - 60.0 0 43.0387 92.6150 0.672 - 43.0387 - 32.6150 0.672 - 0.24 0 0.4000 - 0.2640 0.6720 3.600 0.504 - 0.6720 1.400 0 0 0 - 57.7210 - 43.0387 0.504 57.7210 43.0387 0.504 0 0 0 - 43.0387 - 32.6150 - 0.672 43.0387 32.6150 - 0.672 0 0 0 - 0.5040 0.6720 1.400 0.5040 - 0.6720 2.8000
(III) Force Vector { F }
{F}91 ={F0}-{FE} where
{F0} = vector of nodal forces , and {FE} = vector of equivalent end forces ( fixed end forces and moments due to span loadings. )
For our problem;
T T {F0}={F1, F2, …,F9} = {Fx1, Fy1, Mz1, 20, 0 , 0, Fx3, Fy3, Mz3}
Fixed End Moments and Forces:
Span 2 is loaded with concentrated load acting at its middle. The fixed end forces in member lcs are calculated as shown below:
f F 9 x1 f =-15 kN.m f =9 kN e6 e4 f y1 12 30 kN 24 kN M 1 15 18 kN fe2 (in member local coordinates) f x2 9 f =12 kN f 12 e5 y2 M 15 2 f =15 kN.m e3
f =9 kN e1 f =12 kN e2 Member 2
Coord. # Fixed End Forces In global coordinates:
4 0.8 0.6 0 0 0 0 9 0 5 0.6 0.8 0 0 0 0 12 15 6 T 0 0 1 0 0 0 15 15 FE2 T 2 fe2 7 0 0 0 0.8 0.6 0 9 0 0 0 0 0.6 0.8 0 12 15 8 9 0 0 0 0 0 115 15
The Global load vector becomes:
Unkown forces and moents (Reactions) F1 Fx1 0 Fx1 1 0 F F 0 F 0 2 y1 y1 2 ⋮ M 1 0 M 1 ⋮ 0 Unkown d.o.f. 20 0 20 x2 ⋮ 0 15 15 The global disp. vector ⋮ y2 0 15 15 Fx 3 0 Fx3 0 ⋮ F 15 F 15 ⋮ 0 y3 y3 F9 M 3 15 M 3 15 9 0
The global stiffness equation: [K]{}={F}
1 2 3 4 5 6 7 8 9
1 0.0960 0 - 0.24 - 0.0960 0 - 0.2400 0 0 0 0 Fx1 0 60.0 0 0 - 60.0 0 0 0 0 0 F 2 y1 3 - 0.240 0 0.8000 0.2400 0 0.4000 0 0 0 0 M 1 4 - 0.096 0 0.2400 57.8170 43.0387 - 0.264 - 57.721 - 43.0387 - 0.504 x2 20 5 EI 0 - 60.0 0 43.0387 92.6150 0.672 - 43.0387 - 32.6150 0.672 y2 15 - 0.24 0 0.4000 - 0.2640 0.6720 3.600 0.504 - 0.6720 1.400 15 6 2 7 0 0 0 - 57.7210 - 43.0387 0.504 57.7210 43.0387 0.504 0 Fx3 0 0 0 - 43.0387 - 32.6150 - 0.672 43.0387 32.6150 - 0.672 0 F 15 8 y3 9 0 0 0 - 0.5040 0.6720 1.400 0.5040 - 0.6720 2.8000 0 M 3 15
(Eq. I) Solution of Stiffness Equations
After applying the boundary conditions, the stiffness matrix equation in free coordinates is
57.817 43.0387 0.2640 x2 20 EI 92.615 0.672 15 y2 3.60 2 15 which have the solution
x2 0.6517 1 y2 0.4355 EI 2 4.0376
Support Reactions are found by back substituting in equation in (Eq. I) above:
Fx1 0.9065 F 26.13 y1 M 1 1.459 Fx3 20.91 F 3.87 y3 M 3 21.27
Local effect (end shear forces and Moments in each member) can be obtained by substituting the displacement results in the member stiffness equations.
Typical Computer Output:
NODAL DISPLACEMENTS node x-disp. y-disp. z-rotation 1 000 000 000 2 6.517e-001 -4.355e-001 -4.038e+000 3 000 000 000
SUPPORT REACTIONS supp. x-reac y-reac z-reac 1 9.065e-001 2.613e+001 -1.459e+000 3 -2.091e+001 3.870e+000 -2.127e+001
MEMBER FORCES: MEM. END SHEAR FORCES END MOMENTS END AXIAL FORCES I-NODE J-NODE I-NODE J-NODE I-NODE J-NODE 1 -9.065e-001 9.065e-001 -1.459e+000 -3.074e+000 2.613e+001 -2.613e+001 2 8.360e+000 1.564e+001 3.074e+000 -2.127e+001 3.240e+001 -1.440e+001