Stiffness Method (Frame Example)

Stiffness Method (Frame Example)

<p> Y 30 kN Stiffness Method (Frame Example) 3 Analyze the frame shown using Stiffness method. 3 m 2 E is constant for all members. 20 kN Section properties: 2 member Area Moment of Inertia* 1 5 m 1 A I 1 2 1.5A 3.5I 1 X</p><p>2 4 * A=0.04 m , I=0.0004/3 m  A=300I 4 m</p><p>(I) Member stiffness Matrices in Global coordinates :</p><p>(1) Member 1: i-node=1, j-node=2, L= 5 m, 5 j= 2 4 x j  xi 0  0 y j  yi 5  0 6 c  cos    0, s  sin    1 x L 5 x L 5 1 EA 12EI 6EI 1 a   0.2EA  60EI, d  3  0.096EI, e  2  0.24EI, L L L 2 4EI 2EI f   0.8EI , g   0.4EI. i= 1 1 L L 3</p><p>2 2 K11  a c  d s  0.096EI, K12  (a  d)c s  0, K13  e s  0.24EI 2 2 K 22  a s  d c  60EI, K 23  ec  0</p><p>K 33  f  0.8EI  Coord. # 1 2 3 4 5 6  0.096 0  0.24  0.096  0  0.241  2  0 60 0  0  60 0    0.24 0 0.8 0.24  0 0.4 3 [K]  EI 1  456 (See Stiffness Handout)  0.096 0 0.24 .096 0 0.24   0  60 0 0 60 0 6     0.24 0 0.4 0.24 0 0.8  (2) Member 2: i-node=2, j-node=3, L= 5 m, </p><p> x  x 4  0 y  y 8  5 c  cos  j i   0.8, s  sin  j i   0.3 x L 5 x L 5 E(1.5A) 12E(3.5I) 6E(3.5I) a   0.3EA  90EI, d   0.336EI, e   0.84EI, L L3 L2 4E(3.5I) 2E(3.5I) f   2.8EI , g   1.4EI. 8 L L 7 9 j= 3 2 5 1 Coord. # i= 2 4 6 4 5 6 7 8 9 2 2 K11  a c  d s  57.7210EI   57.7210 43.0387 - 0.5040 - 57.721 - 43.0387 - 0.5040  4   K  (a  d)c s  43.0387  43.0387 32.6150 0.6720 43.0387 - 32.6150 0.6720   12    5   K13  e s  0.5040EI  - 0.5040 0.6720 2.8000 0.5040 - 0.6720 1.4000    [K]2  EI   6 2 2 - 57.7210 - 43.0387 0.5040 57.7210 43.0387 0.5040 K 22  a s  d c  32.6150EI      K  ec  0.6720  - 43.0387 - 32.6150 - 0.6720 43.0387 32.6150 - 0.6720 7  23       - 0.5040 0.6720 1.4000 0.5040 - 0.6720 2.8000 8 K33  f  2.8EI   </p><p>(II) Structure Stiffness Matrix (Global Stiffness Matrix):</p><p>[K]99  [K]1  [K]2</p><p>1 2 3 4 5 6 7 8 9 0.096 0 -0.24 -0.096 0 -0.24 1 0 60 0 0 -60 0 2 -0.24 0 0.8 0.24 0 0.4 3 -0.096 0 0.24 0.096+ 0+ 0.24+ 4 57.721 43.0387 -0.504 -57.721 -43.0387 -0.504 =EI  0 -60 0 0+ 60+ 0+ 5 43.0387 32.615 0.672 -43.0387 -32.615 0.672 -0.24 0 0.4 0.24+ 0+ 0.8+ 6 -0.504 0.672 2.8 0.504 -0.672 1.4 -57.721 -43.0387 0.504 57.721 43.0387 0.504 7 -43.0387 -32.615 -0.672 43.0387 32.615 -0.672 8 -0.504 0.672 1.4 0.504 -0.672 2.8 9 or</p><p>0.0960 0 - 0.24 - 0.0960 0 - 0.2400 0 0 0     0 60.0 0 0 - 60.0 0 0 0 0   - 0.240 0 0.8000 0.2400 0 0.4000 0 0 0     - 0.096 0 0.2400 57.8170 43.0387 - 0.264 - 57.721 - 43.0387 - 0.504  [K]  EI  0 - 60.0 0 43.0387 92.6150 0.672 - 43.0387 - 32.6150 0.672     - 0.24 0 0.4000 - 0.2640 0.6720 3.600 0.504 - 0.6720 1.400   0 0 0 - 57.7210 - 43.0387 0.504 57.7210 43.0387 0.504     0 0 0 - 43.0387 - 32.6150 - 0.672 43.0387 32.6150 - 0.672     0 0 0 - 0.5040 0.6720 1.400 0.5040 - 0.6720 2.8000 </p><p>(III) Force Vector { F }</p><p>{F}91 ={F0}-{FE} where </p><p>{F0} = vector of nodal forces , and {FE} = vector of equivalent end forces ( fixed end forces and moments due to span loadings. )</p><p>For our problem;</p><p>T T {F0}={F1, F2, …,F9} = {Fx1, Fy1, Mz1, 20, 0 , 0, Fx3, Fy3, Mz3}</p><p>Fixed End Moments and Forces:</p><p>Span 2 is loaded with concentrated load acting at its middle. The fixed end forces in member lcs are calculated as shown below:</p><p> f F 9  x1    f =-15 kN.m f =9 kN     e6 e4 f y1 12     30 kN 24 kN M 1   15  18 kN fe2       (in member local coordinates)  f x2   9  f =12 kN  f   12  e5  y2    M  15  2    f =15 kN.m e3</p><p> f =9 kN e1 f =12 kN e2 Member 2</p><p>Coord. # Fixed End Forces In global coordinates:</p><p>4 0.8  0.6 0 0 0 0 9   0       5 0.6 0.8 0 0 0 0 12   15  6 T  0 0 1 0 0 0 15   15  FE2  T 2  fe2        7  0 0 0 0.8  0.6 0 9   0   0 0 0 0.6 0.8 0 12   15  8      9  0 0 0 0 0 115 15</p><p>The Global load vector becomes:</p><p>Unkown forces and moents (Reactions) F1  Fx1   0   Fx1  1   0  F  F   0   F     0   2   y1     y1   2     ⋮  M 1   0   M 1   ⋮   0              Unkown d.o.f.    20   0   20     x2               ⋮    0    15    15  The global disp. vector   ⋮    y2     0   15   15                     Fx 3   0   Fx3     0              ⋮ F 15 F 15 ⋮ 0    y3     y3      F9  M 3  15 M 3 15  9   0 </p><p>The global stiffness equation: [K]{}={F}</p><p>1 2 3 4 5 6 7 8 9</p><p>1 0.0960 0 - 0.24 - 0.0960 0 - 0.2400 0 0 0  0   Fx1   0 60.0 0 0 - 60.0 0 0 0 0  0   F  2     y1  3  - 0.240 0 0.8000 0.2400 0 0.4000 0 0 0  0   M 1       4  - 0.096 0 0.2400 57.8170 43.0387 - 0.264 - 57.721 - 43.0387 - 0.504  x2   20       5 EI 0 - 60.0 0 43.0387 92.6150 0.672 - 43.0387 - 32.6150 0.672  y2    15    - 0.24 0 0.4000 - 0.2640 0.6720 3.600 0.504 - 0.6720 1.400     15  6   2      7 0 0 0 - 57.7210 - 43.0387 0.504 57.7210 43.0387 0.504  0   Fx3       0 0 0 - 43.0387 - 32.6150 - 0.672 43.0387 32.6150 - 0.672 0 F 15 8     y3       9  0 0 0 - 0.5040 0.6720 1.400 0.5040 - 0.6720 2.8000  0  M 3 15</p><p>(Eq. I) Solution of Stiffness Equations</p><p>After applying the boundary conditions, the stiffness matrix equation in free coordinates is</p><p>57.817 43.0387  0.2640 x2   20      EI  92.615 0.672    15   y2         3.60   2  15 which have the solution</p><p> x2   0.6517    1    y2    0.4355   EI     2   4.0376</p><p>Support Reactions are found by back substituting in equation in (Eq. I) above:</p><p>Fx1   0.9065  F   26.13   y1    M 1  1.459      Fx3   20.91 F   3.87   y3    M 3   21.27</p><p>Local effect (end shear forces and Moments in each member) can be obtained by substituting the displacement results in the member stiffness equations.</p><p>Typical Computer Output:</p><p>NODAL DISPLACEMENTS node x-disp. y-disp. z-rotation 1 000 000 000 2 6.517e-001 -4.355e-001 -4.038e+000 3 000 000 000</p><p>SUPPORT REACTIONS supp. x-reac y-reac z-reac 1 9.065e-001 2.613e+001 -1.459e+000 3 -2.091e+001 3.870e+000 -2.127e+001</p><p>MEMBER FORCES: MEM. END SHEAR FORCES END MOMENTS END AXIAL FORCES I-NODE J-NODE I-NODE J-NODE I-NODE J-NODE 1 -9.065e-001 9.065e-001 -1.459e+000 -3.074e+000 2.613e+001 -2.613e+001 2 8.360e+000 1.564e+001 3.074e+000 -2.127e+001 3.240e+001 -1.440e+001</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us